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SUMMARY
Efforts to use genome-wide assays or brain scans to diagnose autism have seen diminishing returns. Yet the
clinical intuition of healthcare professionals, based on longstanding first-hand experience, remains the gold
standard for diagnosis of autism. We leveraged deep learning to deconstruct and interrogate the logic of
expert clinician intuition from clinical reports to inform our understanding of autism. After pre-training on hun-
dreds of millions of general sentences, we finessed large languagemodels (LLMs) on >4,000 free-form health
records from healthcare professionals to distinguish confirmed versus suspected autism cases. By intro-
ducing an explainability strategy, our extended languagemodel architecture could pin down themost salient
single sentences in what drives clinical thinking toward correct diagnoses. Our framework flagged the most
autism-critical DSM-5 criteria to be stereotyped repetitive behaviors, special interests, and perception-based
behaviors, which challenges today’s focus on deficits in social interplay, suggesting necessary revision of
long-trusted diagnostic criteria in gold-standard instruments.
INTRODUCTION

1%–2% of individuals in our societies probably meet our current

diagnostic criteria for autism.1 In the quest toward objective

diagnostic indicators for autism, researchers have ventured to

identify biomarkers in complex biological data, which are epito-

mized by common-variant genetics profiles (i.e., genome-wide

association study [GWAS]) and brain-imaging recordings (i.e.,

magnetic resonance imaging [MRI])—two of the most important

and widely used high-throughput technologies that have

emerged in biomedicine.2–4 Despite laborious and expensive at-

tempts, the use of biomarkers to diagnose autism has not mate-

rialized in everyday clinical reality so far. Our failure to identify

reliable objective autism markers speaks to our limited under-

standing of autism itself—an alternative research paradigm

may be in order.

In particular, there has been a focus on establishing reliable

genetic markers for autism. Despite these efforts, the diagnostic

yield, which denotes the rate of true positives identified by a

diagnostic tool, of genetic tests for autism has remained well

below the threshold needed for clinical adoption.5 Autism is
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known to be highly heritable. Yet, as evidenced by twin and fam-

ily studies,6 the genetic architecture of the disorder is also highly

polygenic: conceivably tens of thousands of associated single-

nucleotide polymorphisms (SNPs)7 are thought to contribute to

the phenotypic presentation in concert. To address this apparent

polygenicity, polygenic risk scores (PRSs) have become an

increasingly common tool for the assessment of an individual’s

genetic propensity for certain brain disorders, including autism.8

PRS involves computing a weighted sum of potentially tens of

thousands of autism-associated genetic variants, as determined

through GWAS.4 A large-scale study evaluated the predictive

ability of their autism PRS model as accounting for a modest

�2% fraction of the observed variance of the autism trait.9

The exploration of predictive machine learning algorithms for

diagnosing autism from combinations of individual genetic loci

has gained momentum in the 2000s. One such investigation

included 237 SNPs located in 146 target genes as input fed

into their predictive model for autism.10 Their hope was that

the machine learning approach would fully exploit subtle genetic

differences to automatically extract diagnosis-relevant patterns

in combinations of individual SNPs. These authors reported a
April 17, 2025 ª 2025 The Authors. Published by Elsevier Inc. 2235
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diagnostic classification accuracy of 71.6% on balanced yet

ethnically homogeneous independent test datasets. However,

this accuracy turned out to be even weaker at only 56.4%

when the same predictive model was evaluated on individuals

that were ethnically dissimilar to those in the training set. This

vexing state of affairs is not entirely unexpected, and there has

been mild progress in identifying ‘‘autism-specific’’ genes11 or

dedicated gene pathways12 that would point to mechanisms

that are idiosyncratic to the primary biology of autism. Indeed,

the foundation of heritable autism traits is distributed across

numerous marginal genetic distinctions in the genome.13 For

these reasons, the use of today’s genetic testing procedures

for individuals with suspected autism is unlikely to yield clinically

useful insight soon.

Even earlier, since the 1990s, another pervasive technique

for the automatic diagnosis of autism is the use of brain-

imaging scanners that can non-invasively record from the central

nervous system. For example, in a seminal benchmarking study,

Abraham and colleagues employed resting-state functional MRI

(R-fMRI) to classify individuals from the largest-of-its-kind data-

set (Autism Brain Imaging Data Exchange [ABIDE]) into autism or

neurotypical control groups.14 In a rigorous, comprehensive ma-

chine learning assessment, these authors aimed to estimate the

best possible prediction performance for the diagnosis of autism

from brain-imaging data. Their careful benchmark concluded

that the support vector classifier with L2 penalization yielded

the highest autism prediction performance on independent test

individuals, at 66.8% classification accuracy—an improvement

over previous attempts at R-fMRI-based diagnosis classification

from the ABIDE dataset at 60% accuracy.15 A later study that

used deep learning to improve upon previous diagnostic classi-

fication saw a modest performance increase, with an accuracy

of 70% on the ABIDE cohort.16 The documented lack of success

in clinical translation from brain imaging in autism may be due to

a combination of reasons.17,18 As autism studies have scaled up

to deploy ever more powerful predictive modeling techniques, it

is becoming clear that there may be limited information about

autism that can be gleaned from brain scans alone.

The investigation of data modes with high intrinsic informa-

tion density as to autism, motivating our present approach,

will be unavoidable for deepening our diagnostic comprehen-

sion of the disorder. With today’s paucity of viable autism bio-

markers, be they genetic profiles, brain-imaging measure-

ments, blood samples, or any other body-derived metric that

we have explored, the burden of diagnosis rests largely on

healthcare practitioners. Clinical judgment involves providing

qualitative evaluation of individuals based on the alignment of

observations to established diagnostic criteria. Autism pre-

sents with a wide variety of symptoms and severity levels.

Therefore, healthcare practitioners today have no other choice

in reserve than trusting their clinical intuition, honed through

years of training and first-hand experience, to reach an accu-

rate diagnosis. This accumulated clinical know-how should

not be overlooked and should instead be considered an indis-

pensable repository of knowledge from which we can draw im-

plementable conclusions. Furthermore, the clinical thought

process, by definition, represents the most compact and

high-fidelity source of diagnosis-relevant information pertain-
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ing to autism. However, unmoored from their initial foundations,

the implementation of the diagnostic guidelines has drifted

significantly, with only half the symptom items required for

diagnosis today compared with 20 years ago.19

There is hence a lack of actionable insight from biomarkers yet

undeniable practical success driven by the clinical intuition of

healthcare practitioners. Therefore, we here tried an unconven-

tional approach: we extracted and interrogated this clinical intu-

ition to more directly inform our understanding of autism and

how to diagnose it. To accomplish this goal, we capitalized on

a cohort of >1,000 children from a large, demographically repre-

sentative population spanning a broad geographic area who

were all referred because of suspected autism, totaling to

>4,000 digital health records from clinical practitioners. We

treated these detailed records as demonstrations of the clinical

thought process itself—assuming that human thought is re-

flected in human language20—representing an untapped trea-

sure trove of knowledge. Fortunately, recent advances in natural

language processing (NLP), culminating in the development of

pre-trained large language models (LLMs), have pushed forward

the direct quantification and analysis of unstructured text20—

abundant in our healthcare systems, yet currently under-

exploited.

By developing a mission-tailored language model architec-

ture, we interrogated the individual semantic elements that exert

profound influence on the clinical process of autism diagnosis.

This languagemodel, pre-trained on hundreds of millions of gen-

eral language sentences, was refined on our corpus of clinical

text reports to achieve a robust diagnostic classification accu-

racy on independent reports, demonstrating that diagnosis-rele-

vant signal can be successfully extracted by transformer lan-

guage models. More importantly, our purpose-built language

model architecture was designed to be natively interpretable.

We use this framework to unpack the most essential drivers of

autism diagnosis as articulated by the experienced clinicians

themselves. With the derived context of this autism-aware

space, we assessed the relative usefulness of each specific

Diagnostic and Statistical Manual of Mental Disorders, 5th Edi-

tion (DSM-5)21 autism criterion in contributing to the establish-

ment of a precise diagnosis. We thus showed that the clinical

thought process itself can be deconvolved to provide actionable

insight into what the diagnostic criteria of autism should be.

RESULTS

Rationale and analysis workflow
In contrast to consensus research in autism, our study began

from the assertion that there is untapped value in dissecting

the clinical expertise of healthcare professionals frequently

exposed to large, diverse populations enriched in autism.We ex-

pected that clinical thinking could be deconvolved through a fully

data-driven analysis of text reports to lend insights into the

essence of what distinguishes observations of a child with

autism from one in whom a diagnosis has been clinically ruled

out. In a first step, we tested whether leveraging the advanced

text processing capabilities of large pre-trained language

models could extract valuable information for precisely predict-

ing autism diagnosis, based solely on clinical observations of
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Figure 1. Language model technology can locate sentences critical for autism diagnosis in digitized medical records

(A) >4,000 hard-copy free-form healthcare professional reports, in French, of >1,000 children assessed over a 4-year period were scanned and converted to PDF

format, and text was parsed: we used a computer vision optical character recognition (OCR) pipeline to convert each health record into a plain text format that

was fully actionable on language model frameworks.

(B) We facilitated sentence-level analysis by feeding each sentence from each report individually into a French-language RoBERTa-based language model

backbone pre-trained on 12.8 billion word tokens of general-purpose text. This encoded the sentences into a semantically rich and quantitatively comparable

embedding space. Individual words are tokenized in a format that is actionable by themodel, subsequently embedded as dense vectors in a continuous space by

our pre-trained model, and combined with positional encodings that capture the order of the words in the sequence. Sentence embeddings are constructed by

mean-pooling the word embedding representations produced by our pre-trained language model, forming the fundamental unit of our interpretability pipeline.

The next processing component consists of a trainable single-head attention module that is (jointly) trained to pinpoint and preferentially weight the language

model-embedded sentences that are most helpful in diagnosis classification, thereby automatically identifying salient sentence-level information from each

healthcare professional report. The overall report embedding is then constructed as a weighted average of the sentence embeddings. The final module is a linear

classification layer that predicts the final consensus diagnosis based on the attention-guided report embedding. The two-component model, including the pre-

trained backbone and the single-head attention layer, was fine-tuned on the >4,000 reports in an end-to-end fashion to predict the diagnosis. This fine-tuning

process shapes the embedding space into an autism-aware semantic space, where each sentence embedding reflects its relationship to a potential autism

diagnosis.
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individuals, without checking DSM-5 criteria. Next, we sought to

rigorously understand and quantify themost relevant elements in

reports from healthcare professionals during the diagnostic pro-

cess that led up to confirmed autism diagnoses, as conveyed by

healthcare professionals experienced in working with children

with autism. Further, we realized that centering the single-sen-

tence level as the unit of investigation (as opposed to the word

level or report level) would enable a high degree of granularity

for downstream interpretation while retaining outstanding pre-

dictive accuracy of the diagnosis. To enable sentence-level

granularity in analysis and interpretation, we architected a

trainable single-head attention module as the final layer of our

language model framework. This single-head attention module

pinpointed and selectively flagged the most autism-critical sen-

tences in each report. In short, the pre-trained language model

leverages transfer learning to extract relevant semantic elements

from the text, while the single-head attention module enables

direct interpretability of these semantic elements.

Language models extract underlying semantic nuances
of autism features from clinical health records
We devised a pipeline using a pre-trained general-purpose lan-

guage model, followed by fine-tuning on our domain-specific

corpus. Specifically, we deployed a RoBERTa-based22 lan-

guage model (138 million model parameters in total) that was

pre-trained on 12.8 billion word tokens, totaling to approximately

489 million training sentences of broad-domain text corpora.

This pre-training regimen spawned a general-purpose language
representation in the model,20 which enabled us to effectively

use transfer learning to fine-tune the model toward predicting

autism diagnosis on our carefully collected clinical dataset of

4,272 complete autism-focused reports from 1,080 different pa-

tients, each with potentially several clinical visits (Figure 1).

The entire model was fine-tuned end-to-end on our collection

of 4,272 reports with the goal of classifying the associated

autism diagnosis for each report: clinically confirmed versus sus-

pected but ruled-out autism case. This end-to-end fine-tuning

entailed further training the parameters of the pre-trained lan-

guage model, the single-head attention module, and the final

classification layer jointly on the autism diagnosis classification

objective. We calculated the classification performance accu-

racies following a rigorous 5-fold cross-validation framework:

for each cross-validation fold, 80% of the reports were randomly

selected to compose the training set on which our model was

fine-tuned, while the remaining 20% of new unseen reports

constituted the test set on which the out-of-sample accuracies

for each fold were calculated. To respect independence be-

tween individuals, multiple reports from the same patient were

exclusively allocated to either the test set or the training set in

each fold.

In comparison to standard bag-of-words (BOW) approaches

and a more advanced Doc2Vec algorithm23 for diagnosis classi-

fication, which do not benefit from pre-training, our language

model framework robustly outperformed in terms of average

out-of-sample classification accuracy (Figure 2A). Our language

model achieved an average accuracy of 79.4% (SD, 0.9%) on
Cell 188, 2235–2248, April 17, 2025 2237
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Figure 2. Pre-trained language models

enable robust classification accuracy of

autism diagnoses from healthcare profes-

sional reports

(A) Out-of-sample autism diagnosis prediction ac-

curacy from unstructured health professional re-

ports, from traditional and more advanced natural

language processing algorithms. Bar height in-

dicates the average score after 5-fold cross-valida-

tion, and whiskers indicate the variability (one stan-

dard deviation) of model prediction performance

after fitting each model through 5-fold cross-vali-

dation. Solid-colored bars correspond to raw clas-

sification accuracy, while bars with diagonal stripes

correspond to F1score.Ourmodel is shadedgreen.

All models were trained on the same corpus of re-

ports and evaluated using the same 5-fold cross-

validation scheme. Our single-sentence pre-trained

RoBERTa-basedmodel, fine-tunedonourcorpusof

text reports, shows higher average classification

accuracy compared with traditional NLP ap-

proaches, in addition to allowing for greater inter-

pretability.SeeFigureS1andTableS1 for additional

benchmarks. BOW, bag of words.

(B) Confusion matrix of our single-sentence

RoBERTa-based model predictions. The vertical

axis corresponds to the actual clinically designated

autism diagnosis, while the horizontal axis denotes

our model predictions for the diagnosis label, per

report.

(C) Our fine-tuned language model spans an autism-aware embedding space at single-sentence granularity. PCA decomposition of sentence-level embeddings

generated by our languagemodel reveals a separation of sentences taken from clinically confirmed autism cases versus non-autism cases. Each point in the PCAplot

corresponds to a single sentence and is colored according to the final diagnosis label: autism refers to clinically confirmed autism cases, and ‘‘non-autism’’ refers to

suspected but clinically ruled-out cases. The learned underlying embedding space instantiated by our transformer language model allows for direct comparison and

contrast between any two natural language sentences, regardless of origin, regarding information value for autism diagnosis.

See also Figure S1.
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unseen reports, while the baseline BOWmodels achieved an ac-

curacy of only 65.4% (SD, 0.9%) with a linear naive Bayes clas-

sifier and 73.1% (SD, 0.8%) with a non-linear random forest clas-

sifier. The Doc2Vec method yielded a classification accuracy of

only 76.2% (SD, 1.9%). Therefore, our fine-tuned language

model, enhanced by transfer learning, enabled superior general-

ization by a higher diagnosis classification accuracy compared

with traditional NLPmethods (see Figure 2B for a detailed confu-

sion matrix of our model predictions). What is essential for inter-

pretability is our model’s ability to distinguish between clinically

confirmed and suspected but ruled-out cases of autism, rather

than the raw autism detection rate. Similar classification perfor-

mance was observed with other transformer-based models,

including Longformer,24,25 Llama 3.1 8B,26 and Gemma 7B27

(see Figure S1 and Table S1 for extended benchmarks). Conse-

quently, our fine-tuned language model was able to effectively

extract relevant information from unstructured clinical notes

and thus also aspects of the clinical thought process that al-

lowed for reliable autism diagnosis detection.

Unpacking language model internals at sentence-level
granularity
After ascertaining our model’s ability to correctly predict autism

diagnoses, underscoring the disorder-relevance of its semantic

representation space, we leveraged our sentence-level strategy
2238 Cell 188, 2235–2248, April 17, 2025
to open a window into the internals of what is commonly consid-

ered to be an impenetrable black box.20 Our objective was to

conduct an initial confirmatory assessment that the internal sen-

tence-level representation of the language model indeed

captured aspects related to individual clinical features that char-

acterize autism. We extracted the major factors of variation

(using principal-component analysis [PCA]) across all hidden di-

mensions of the sentence embeddings for each sentence in our

corpus into a more compact 2D representation (Figure 2C).

Hence, we effectively brought to the surface important aspects

of the internal semantic representational space spanned by our

model. Each data point in the PCA analysis (dot in scatterplot,

Figure 2C) corresponds to an individual sentence, colored

post-hoc according to the diagnosis associated with the report

fromwhich each sentence originates. As evidenced by this latent

space exploration, after we fine-tuned the model on our collec-

tion of autism reports, the languagemodel spanned ameaningful

autism-aware embedding space: sentences carrying informa-

tion associated with autism diagnosis are separated from sen-

tences that convey semantic elements that were unhelpful for

the diagnosis of autism. Moreover, this autism-sensitive seman-

tic representation covers the entirety of possible natural lan-

guage inputs, meaning that it allows for the comparison of any

two sentences, regardless of their origin, based on their rele-

vance for autism classification (cf. below).
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Figure 3. Layer-wise prediction of autism diagnosis from report embeddings speaks to how language model makes decisions internally

(A) Receiver operating characteristic (ROC) curve for the diagnosis prediction task from the pooled report embeddings for each layer of our fine-tuned model. As

information is flowing through our model architecture’s processing layers, the pooled report embeddings become increasingly useful in predicting the diagnosis.

As the model extracts and combines more relevant information from every part of the report at each layer, the pooled embeddings become increasingly useful for

distinguishing diagnosed autistic from non-autistic subjects. The depth of the chosen pre-trained model appears critical for the accurate classification of the

diagnosis. It is possible to extract internal languagemodel features that are increasingly relevant to the classification task. Each curve for each layer was averaged

over 5 cross-validation folds.

(B) Analogous to (A), but shows the prediction performance (average area under the curve [AUC]) for the autism prediction models layer by layer, with error bars

indicating the standard deviation across 5 cross-validation folds.
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To dissect the viscera of this multi-layer deep learning archi-

tecture in yet another complementary way, we aimed to trace

properties of the internal logic of the language model as the

text report information is transformed and moved through each

layer of the model. After mean-pooling the individual sentence

embeddings for each report at each of the 12 layers of the

deep neural network, we used this report-level embedding as a

basis to train a predictive linear classifier (logistic regression)

on the associated diagnosis label. We found that there was a

steady increase in the autism classification performance as in-

formation froma report moved deeper and deeper into themodel

(Figures 3A and 3B): starting in the 1st layer with an average area

under the curve (AUC) of 0.746 (SD, 0.014), in themiddle 6th layer

with an average AUC of 0.866 (SD, 0.014), and finally reaching its

maximum performance at the final 12th layer with an AUC of

0.968 (SD, 0.008) averaged across cross-validation folds.

Thus, these analyses confirmed that the sentence embeddings

successively transformed by the model layers become increas-

ingly diagnosis-relevant as the model extracts and recombines

themost essential information from each report for the diagnosis

classification task. Indeed, it is this highly informative distillation

from layer 12 that was fed directly into our single-sentence atten-

tion module, where the most important sentences for the diag-

nosis are automatically identified and preferentially up-weighted.

Hence, our devised single-sentence attention module served to

refine the signal that the pre-trained language model reads from

the entire report content for the sake of human comprehension.

The use of a single-head attention module as a trainable filter

inside our languagemodel allows for a naturally interpretable de-

vice for weighing each sentence’s importance within a report in

relation to the diagnosis prediction. The sentences that turned

out to be most strongly attended were assigned greater weight

in the pooled report embedding. Therefore, these sentences,

which prove to be highly salient to the language model, are by
definition the most important sentences for the final autism diag-

nosis classification. Examples of the attention pattern for every

sentence in a particular report are given in Figure 4A, as well

as a summary of the key aspects that are mentioned in the

most highly attended sentence in each report. Our specialized

attention mechanism clearly identified sentences containing

specific topics that are traditionally associated with a diagnosis

of autism. Notably, the pattern of how the language model

spends attentional budget tended to be concentrated, indicating

that the model identified a typically small number of very impor-

tant sentences to highlight for the classification task in a report

at hand.

After inspecting the most highlighted sentences from a

broader perspective, we identified the most frequently occurring

words from the top-attended sentences across all reports. We

quantified this by taking the ratio between the number of occur-

rences of a given word in the most highly attended sentences

from diagnosed autism reports and the number of occurrences

of that same word in the spotlighted sentences from reports

not diagnosed as autism. The most frequently used words that

clinicians employed to describe subjects with a final diagnosis

of autism compared with those without a diagnosis of autism

involved concepts indicative of repetitive movements and

speech, special interests, and sensory-processing and percep-

tion-based behavior. For example, the word ‘‘flapping’’ occurred

21.53 more often in reports from autism-diagnosed patients

compared with reports from children without a diagnosis of

autism. Similarly, the words ‘‘echolalia’’ and ‘‘vocalizations’’

occurred 14.13 and 12.23 more often, respectively, in the re-

ports of what turned out to be autism cases. In regard to special

interests, the words ‘‘letters,’’ ‘‘numbers,’’ and ‘‘alphabet’’ were

mentioned 24.13, 16.83, and 14.03 more frequently in

reports of autism cases, respectively.28 These insights show

that our single-sentence neural network approach allowed us
Cell 188, 2235–2248, April 17, 2025 2239
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Figure 4. Language model-attention mechanism detects most autism-relevant sentences

(A) Our single-head attention module automatically pinpoints the most essential sentences in a given report for the eventual autism diagnosis classification. Each

column/row of the attention weight matrix corresponds to a single sentence for a report, where each cell in the attention matrix corresponds to the semantic link

from one sentence on another. Darker color denotes larger attention weight, that is, larger relevance for internal processing in the LLM. The highlighted column

indicates the maximally attended sentence in each example report. These classification-driving sentences highlight a diverse array of autism-associated be-

haviors and developmental histories, summarized to protect patient confidentiality. Each of these example reports was correctly classified as being associated

with a clinically confirmed diagnosis of autism.

(B) The single most attended sentences for autistic subjects, per report, contain many times more references to repetitive behaviors and stereotypical behaviors

(flapping, ‘‘mannerisms,’’ and echolalia), special interests (such as written material: letters, numbers, and alphabet), and verbal/language autistic specificities

(vocalizations). The y axis indicates how many times more frequently, in terms of the ratio of raw word occurrences, a given word occurs in the most highly

attended sentences in reports from the diagnosed autism cohort compared with those from reports from the cohort that did not receive an autism diagnosis. This

word-level breakdown offers a synopsis of the content of our attention-highlighted autism-relevant sentences.
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to successfully pinpoint themost important sentences for autism

diagnosis and to quantify their importance in relation to all other

sentences in each report. These highly up-weighted sentences

contain precise terms that are known to be autism-relevant

(Figures 4A and 4B).

Transfer learning based on the language model’s
semantic space allows revisiting the incumbent DSM
criteria
To better understand the workings of clinical intuition of prac-

ticing healthcare professionals when assessing individuals

suspected to carry autism, we developed a modeling tactic

that facilitated the inclusion of established diagnostic criteria
2240 Cell 188, 2235–2248, April 17, 2025
from the DSM-5 catalog in the context of the embedding

space of our language model. Briefly, the DSM-5 catalog con-

tains seven distinct diagnostic criteria for autism, grouped into

A and B sections. The classification’s A section addresses

persistent deficits in social communication and interaction.

For instance, A1 denotes ‘‘deficits in social-emotional reci-

procity,’’ A2 denotes ‘‘deficits in nonverbal communicative

behaviors used for social interaction,’’ and A3 denotes

‘‘deficits in developing, maintaining, and understanding rela-

tionships.’’ The B section is dedicated to restricted, repetitive

patterns of behavior, interests, or activities. In particular, B1

denotes ‘‘stereotyped or repetitive motor movements, use of

objects, or speech,’’ B2 denotes ‘‘insistence on sameness,
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Figure 5. Language model semantic embeddings can be compared against external DSM-5 criteria for autism diagnosis

(A) Using our fine-tuned language model, we can generate meaningful sentence embeddings for any external natural language input sentence. In this case, we

generated embeddings for the sevenDSM-5 autism criteria—none ofwhich have actually been assessed in our participants by the healthcare professionals. Each

criterion can be visualized in the 2DPCA representation space spanned by our languagemodel. B1, B3, and B4 are located closer to the autism-dominant section

of the embedding space, whereas A1, A2, A3, and B2 are clustered much more closely together and are situated near the non-autism-dominant section of the

embedding space.

(B) After processing each DSM-5 autism criterion (A1–B4) through our model and obtaining sentence-level embeddings, we calculate the cosine similarities

between each criterion’s embedding and the most attended sentence in each report. This distribution is represented by a density plot as well as a boxplot

corresponding to the interquartile range for the cosine similarities between the DSM-5 criteria and the most attended and autism-critical sentence in each report.

These distributions are divided based on the final diagnosis for each report (autism versus non-autism). For some criteria, the similarity between that criterion and

the most attended sentences follows a very different distribution between autism and non-autism-diagnosed subjects. This suggests that the similarity between

DSM-5 criteria embeddings and our model’s highly attended sentences can distinguish autism from non-autism subjects.

(C) ROC curve showing the out-of-sample classification performance of the LDA model trained on the cosine similarities of each DSM-5 criterion and the most

attended sentences in each report (purple line). Classification performance drops significantly when the cosine similarities of each DSM-5 criterion and a random

sentence from each report are used as features for the LDA model (teal line). The derived similarity and dissimilarity indices of the DSM-5 criteria with the top-

attended sentence in each report can be used by another machine learning model (LDA) to successfully discriminate between autism and non-autism groups.

(D) Correlation of LDA-transformed scores with DSM-5 criterion cosine similarities is shown for each fold in a 5-fold cross-validation. Each dot represents a single

cross-validation fold from the out-of-sample correlation for a criterion, measuring how similar the top-attended sentence for each report is to the DSM-5

diagnostic criteria. LDA scores represent data dimensions that maximize discrimination between autism and non-autism subjects. Correlations indicate the

discriminative power of each criterion: values near +1 suggest association with autism, while values near �1 suggest association with non-autism. In particular,

B1, B3, and B4 are overall more discriminative for autism in our sample.

See also Figures S2 and S3.
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inflexible adherence to routines, or ritualized patterns of verbal

or nonverbal behavior,’’ B3 denotes ‘‘highly restricted, fixated

interests that are abnormal in intensity or focus,’’ and B4 de-

notes ‘‘hyper- or hyporeactivity to sensory input or unusual in-

terests in sensory aspects of the environment.’’ See Table S2

for a full reproduction of the DSM-5 A and B signs for autism.

Note that the presence or absence of each DSM-5 criterion

was not explicitly listed in the reports.

Nevertheless, we devised a scheme to ‘‘rate’’ each report sen-

tence according to these diagnostic dimensions widespread in

clinical practice. Indeed, a major asset of our sentence-specific,
language model-based approach (cf. Bzdok et al.20) is that it en-

ables the quantitative and objective evaluation and comparison

of external descriptors based on localizing their position in our

autism-aware semantic embedding space (Figure 5A). Conse-

quently, we strove to evaluate how useful each individual

DSM-5 autism criterion is for the diagnosis of autism in the

context of the semantic space spanned by our report corpus.

We fed all seven DSM-5 criteria descriptions into our model,

generating embeddings for each criterion. The A1-A3 and B2

criteria were all positioned in a tight region of the embedding

space that was populated mostly by sentences from subjects
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with suspected but clinically ruled-out diagnoses of autism. By

contrast, the B1, B3, and B4 criteria were more dispersed and

located in a region that is highly enriched with autism-associated

sentences. These findings align with macro-level trends

observed in our word-frequency analysis: clinicians commonly

used expressions related to stereotyped movements and

speech, special interests, and reactivity to sensory input to

describe subjects with confirmed autism, without emphasizing

deficits in social communication or interaction. These findings

in embedding similarities validated that the overall semantic

meaning of the most influential model-identified sentences

directly correspond to the DSM-5 criteria regarding stereotyped

or repetitive behavior and sensory reactivity.

After embedding each external DSM item in our language

model space, wemeasured the distance inmeaning (cosine sim-

ilarity) between each DSM-5 criterion and the leading autism-

related sentence for each report. This analytical protocol yielded

seven distinct cosine similarities for each report: cosine similarity

is a well-established measure of the semantic similarity between

any two instancesof sentenceembeddings.29,30 Acosine similar-

ity of +1, 0, or�1 indicates that a given pair of two sentences has

identical, no, or opposite semantic meaning, respectively. The

cosine similarity group distributions revealed that DSM-5 criteria

B1, B3, and B4 are the most similar to the semantic representa-

tion of the top sentences distinguishing actual from suspected

cases in autism assessment reports. By contrast, the A1-A3

and B2 criteria showed a slightly opposing content of meaning

with the top sentences in the diagnosed autism reports (Fig-

ure 5B). Further, aside from the B1 criterion, the majority of the

top sentences from the suspected but clinically ruled-out autism

reports showed near 0 cosine similarity to the DSM-5 criteria,

passing an acid test suggesting the soundness of our external

validation approach based on the DSM-5 gold standard.

In conjunction with the overlapping positions of A1-A3 and B2

in the embedding space (Figure 5A), our language model inter-

prets these criteria as being somewhat diagnostically homolo-

gous and providing relatively less information for distinguishing

children with clinically confirmed versus suspected but ruled-

out autism. This model-inferred semantic redundancy suggests

that each criterion by itself may have reduced diagnostic rele-

vance at an individual level. Taken together, our autism-aware

semantic space identified the B1, B3, and B4 criteria as being

especially relevant to the confirmatory diagnosis of autism,

with the A1-A3 and B2 criteria carrying limited autism-critical in-

formation in our cohort. Additional negative controls with an

embedding space formed through an orthogonal fine-tuning

objective (either random labels or age group prediction) failed

to highlight B1, B3, and B4 (see Figures S2 and S3). Thus, B1,

B3, and B4 are relevant to the diagnosis outcome specifically

and are not simply background features in our dataset.

Finally, we tested whether cosine distances derived from

external diagnostic rules were clinically meaningful by using

them as input features for a linear discriminant analysis (LDA)

classifier. The goal was to detect confirmed autism diagnoses

based solely on the semantic similarities between each report’s

top sentence and the seven DSM-5 criteria. That is, each report,

instead of its original text content, was indexed only by seven

distinct cosine similarities, representing how closely each report
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was semantically related to each of the DSM-5 criteria. We were

again able to predict the diagnosis in reports previously unseen

by the LDA model, achieving a confident AUC of 0.905 (SD,

0.013), averaged across cross-validation folds, in new unseen

reports from unseen patients. This observation indicated that

these similarity scores do indeed convey compact information

that is useful in the context of autism diagnosis (Figure 5C).

Moreover, by inspecting the obtained LDA model, we sought

to confirm that the B1, B3, and B4 criteria in particular are

most predictive in the direction of autism. LDA seeks to calculate

a linear combination of input features that allows us to discrimi-

nate between the two groups. We found that the DSM sentence

similarities that were most helpful in predicting the autism diag-

nosis for each report were indeed B1, B3, and B4.

As a secondary confirmation that our single-sentence lan-

guage model-attention approach identifies the most critical sen-

tences for autism classification, we fitted an additional LDA clas-

sifier on the cosine similarities between a randomly selected

sentence from each report and each of the DSM-5 autism

criteria.We found that therewas a dramatic drop in the diagnosis

classification performance with an average AUC of only 0.676

(SD, 0.021) (Figure 5C). Hence, we confirmed that the level of se-

mantic agreement between the language model-identified influ-

ential sentences and the DSM-5 criteria is indeed discriminative

between suspected and confirmed autism cases, even on un-

seen reports. Accordingly, our pattern-learning classifier vali-

dated that the B1, B3, and B4 criteria relating to stereotyped or

repetitive behavior, special interests, and sensory reactivity

are, again, directly predictive of confirmed autism.

DISCUSSION

Some scientists may argue that brain imaging and common-

variant genetics in mental health are costly and still not relevant

for clinical diagnosis and intervention. These techniques also

yielded scarce information on the biological mechanisms that

lead to major neurodevelopmental disorders like autism. We

argue that the longstanding experience and expertise of health-

care professionals working alongside people with autism offer a

rich resource to unravel the nature of autism.31,32 In a field that

cannot rely upon biological testing methods, breaking down

and analyzing subconscious clinical thought and decision-mak-

ing processes can potentially shed light on opaque facets of the

autism phenotype. In particular, first-hand clinical observation

provides an unfiltered verbatim portrait of autism-critical traits

and behaviors. In our study, we hence aimed to take the clinical

intuition of health professionals itself into sharp focus. For this

purpose, we built and deployed a customized language model

framework in >4,000 health records on >1,000 children with sus-

pected autism, tailored for single-sentence explainability for

direct human interpretation. With these solutions for advanced

NLP,20 we were able to probe and dissect aspects of the diag-

nostic process that are intrinsically specific to autism in a more

impartial way.

For a number of decades, the notion of ‘‘specificity’’ in autism

has been a central, and sometimes vexing, topic of dispute.33

With regards to the description and diagnosis based on DSM-5

criteria, no single clinical autism criterion is pathognomonic.
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Many different combinations of signs can lead to the same diag-

nosis according to the DSM-5 criteria. Some combinations of the

same signs may even be better explained by an alternative diag-

nosis. This study has confronted this challenge in defining autism

in a data-driven fashion: our approach carved out the unique fac-

ets of behavior, actions, and routine that aremost distinctly reflec-

tive of autism, in comparison to many conditions and contexts

that lead healthcare professionals to initially suspect autism

cases. Thanks to the recent acceleration of innovation in the ca-

pabilities of language models, combined with our data resource

of first-hand clinical observations, we have been able to decon-

volve indispensable features consistent across thousands of clin-

ical examinations to directly interrogate pre-existing conceptual-

izations of autism-specific traits, as codified in gold standard

diagnostic manuals such as the DSM-5.

In view of accumulating evidence,34 there is an urgent need

for revisiting the diagnostic criteria that are in default use every

day in our mental health institutions. It is instructive to consider

that the very term ‘‘autism’’ has been built on shifting ground.

‘‘Autism’’ was initially coined by Bleuler at the beginning of

the 20th century to describe severe cases of schizophrenia,

with a particular emphasis on avoidance of reality and exces-

sive internal fantasizing.35,36 By the 1970s, the term autism

had undergone a definitional reversal, then referring instead

to a lack of internal fantasy and, crucially, a failure to develop

social relationships.37 Building upon these notions, Wing and

Gould introduced a system of classification for autism as per

childhood impairments anchored in the quality of social interac-

tion, which pushed the idea of autism as a primarily social

impairment to the forefront of mainstream autism research.38

Indeed, �40 years ago, an influential study attempted to

explain the root of these social deficits. Baron-Cohen, Leslie,

and Frith asserted that what is specific to children with autism

is a lack of social skills in the form of a ‘‘theory of mind’’ deficit.39

These authors tested the ability of 27 typically developing chil-

dren, 14 children with an intellectual disability due to Down syn-

drome, and 20 children with autism to discern the beliefs held by

a hypothetical character in a story. Children with autism, in

contrast to children in the two control groups, usually failed to

recognize that the story character would hold a false belief about

where an object was placed when informed that the object was

moved from its original location without the character’s knowl-

edge. According to Baron-Cohen and co-investigators, these re-

sults illustrated that children with autism are uniquely incapable

of inferring the mental states of others—in other words, these

children lack a theory of mind. By including children with Down

syndrome as a control group, the authors concluded that this

intrinsic theory ofmind deficit in childrenwith autism is ‘‘indepen-

dent of mental retardation and specific to autism.’’

The claim of specific inability to conceptualize the mental

states of others is highlighted as an underlying cause of social

deficits in children with autism—it has served as a North Star

for decades of research, diagnosis, and treatment. This concep-

tualization has had a profound impact on the general under-

standing of autism and the development of interventions aimed

at improving social and communication skills.40–45 The ever-

shifting definition and inconsistent reframing of autism-defining

traits witness a long-lasting quest for specificity since the term’s
inception. Despite the attempts to systematize the characteriza-

tion of autistic traits in standardized diagnostic instruments, typi-

cally taking the form of item checklists, stakeholders are still

wondering which criteria aremost effective in differentiating indi-

viduals with and without autism.46 Importantly, the emphasis on

social communication deficits in today’s DSM-5 criteria does

align with the theory of mind deficits highlighted by the seminal

work of Baron-Cohen and colleagues.

Yet, as a consequence of our collective findings, we call into

question the heavy focus on social deficits in research and clin-

ical practice, echoed in established diagnostic instruments that

are widely used by clinicians. In contrast to the dominant

conceptualization, we found that the most autism-distinctive

criteria pertain to repetitive and stereotypical perception-based

behaviors, special interests, and sensory reactivity—as pre-

dicted by the enhanced perceptual functioning model.47,48 In

our large cohort of suspected and confirmed autism cases,

none of the DSM-5 criteria associated with social deficits turned

out to be specific to autism. Further, by means of our term fre-

quency analysis of the most autism-predictive sentences, we

found that our language model did not identify aspects of social

skills as playing an important role in the reports of confirmed

autism cases. It should be emphasized that these results are

based on the real-world clinical observations of experienced

autism practitioners in a clinic that evaluates suspected autism

cases on an almost daily basis.

Taken together, our results indicated that, empirically, the

most autism-predictive sentences noted by these experienced

autism practitioners were highly semantically similar to the

DSM-5 criteria relating to repetitive behavior and sensory reac-

tivity. There was essentially no semantic overlap between

autism-predictive sentences andDSM-5 criteria regarding social

deficits. It may in fact be the case that these repetitive, special

interest, and perception-based behaviors are much more proto-

typical of autism thanmainstream research and the clinical state-

of-the-art suggest—such a conclusion would be in line with our

language model-derived findings.

Despite recently increasing efforts,49 there is still insufficient

emphasis on repetitive behavioral and perception-based traits

in standardized diagnostic catalogs. Concretely, following the

incumbent DSM-5 manual, the clinician needs to check off three

out of three social deficit criteria for a diagnosis of autism. On the

other hand, this diagnosis requires only two out of four possible

criteria relating to repetitive behaviors, special interests, and

sensory reactivity. We argue that this strong weighting on

observed features of social deficits in standardized instruments

and authoritative medical classification systems is at odds with

our language model-enabled quantitative evidence, based on

our quantitative assessment of the most autism-predictive

words, phrases, and diagnostic criteria employed by experi-

enced clinicians to describe children with autism. In other words,

our findings suggest that the social features alone are not spe-

cific enough to assign the autism diagnosis to a child. While re-

petitive and stereotyped behaviors do exist in conditions other

than autism,50,51 it is perhaps their presence in context with suf-

ficiently obvious signs of social deficit that is truly distinctive.

Indeed, as our cohort consisted of suspected autism cases

who had been referred to a specialized autism clinic, these
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repetitive and stereotyped behaviors are most discriminatory in

the direction of autism amidst a shared backdrop of apparent so-

cial deficiency. Being more specific and pathognomonic to

autism when present alongside socio-communicative deficits,

repetitive and perception-based behaviors, and hyperfocused

interests is much easier, less time consuming, and more consis-

tent to assess clinically.52 Moreover, their uniqueness and pre-

dictive value have been suspected repeatedly to be superior to

highly variable presentations of socio-communicative skills.53,54

These deficits in socio-communicative skills can exhibit superfi-

cial phenotypic similarity in a range of different neurodevelop-

mental and psychiatric conditions and contexts, such as social

(pragmatic) communication disorder, expressive language dis-

order, ADHD, social anxiety traits, avoidant personality traits,

and avoidant attachment style.55,56 These social behavioral ten-

dencies are also more prone to change over the span of multiple

years compared with specific repetitive and perception-based

behaviors,57,58 making these social traits somewhat of a moving

target and harder to detect in older children and adults. It may

also be said that repetitive and stereotyped behaviors are

more salient in a younger cohort representative of first-time

autism diagnostic referrals such as ours. These types of behav-

iors are commonly more prominent in younger children with

lower developmental levels, whether diagnosed with autism or

not.59 Hence, due to this clear imbalance in diagnostic criteria,

healthcare professionals are spending more time on evaluating

traits that, according to our study, have less traction for the over-

all diagnosis.

From a broader perspective, existing diagnostic tools are

framed around what autistic children lack socially and behavior-

ally, instead of focusing on their cognitive and perception-based

strengths and proficiencies. Clearly, the absence of behavior is

intrinsically less defined, less idiosyncratic, and less informa-

tion-dense than the positive signals stemming from a specific

behavior. This current framing has widespread implications for

potential interventions or behavioral therapeutic strategies.

Many current approaches to therapy for autistic individuals focus

solely on remediating deficits in social skills and attempt to

ameliorate these impairments through direct exposure.60–62

While these therapeutic interventions are likely to be helpful for

many individuals in developing a fulfilling life and improving

adaptive functioning, we may see even greater overall quality

of life improvements if we focus our energy equally on the cogni-

tive and perception-based strengths and interests of autistic

children that are most likely to foster self-esteem and promote

positive mental health.63 As an alternative approach, strength-

informed intervention focuses on building on autistic interests

and capabilities displayed in natural settings, often reflected in

repetitive behaviors and interactions with physical objects.63

Given the apparent etiological heterogeneity of autism, it is un-

clear just howmuch progress can be expected in identifying spe-

cific markers in the general autism population. Indeed, autism

has not been described by one definitive biological cause, brain

region, gene, or fully consistent set of symptoms. While the bio-

logical underpinnings of the disorder may remain diffuse, the

clinical presentation of autismmay bemore uniform,64 with com-

mon threads being shared among differentiated substrata of the

autism population. It is such empirical and clinically derived sub-
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typing, perhaps enabled through language model approaches,

that could be most helpful for identifying and stratifying individ-

uals that share common underlying neurobiological features,

with the goal of introducing more tailored diagnostic criteria or

concrete markers.

In conclusion, seizing a newly emerged opportunity, language

models hold potential in deconvolving the elements that under-

pin human intuition at work on the clinical ward. Leveraging

this technology can help reconceptualize our understanding

and resharpen the focus of our diagnostic tools for many mental

health disorders, not just autism.20 Language models provide a

complementary lens, as we have shown here in the example of

autism. In today’s absence of accurate and objective bio-

markers, a challenge pervasive across psychiatry, clinical

assessment remains the bedrock upon which major mental

health categories are articulated, assessed, and addressed.

Ignoring this rich source of actionable insight bears high oppor-

tunity costs. We should use every tool at our disposal to put psy-

chiatry on a more solid foundation. Fortunately, text-based AI

solutions are becomingmore powerful, interpretable, and acces-

sible every day.
Limitations of the study
A few limitations should be borne in mind when considering this

study. First, our sample is large and includes subjects from

diverse backgrounds. Yet, all subjects were recruited from one

region in Northern Montreal, in Québec, Canada. Second, our

cohort is relatively young and characteristic of first-time autism

referrals. Therefore, the findings presented in this study may

be more specific to this age range of autistic subjects and may

not be as applicable to older individuals with autism. In general,

we present our results in the context of the full widely sampled

cohort. That is, we do not attempt to draw more narrow conclu-

sions on the basis of sex, specific age groups, or other demo-

graphic variables. Investigations into these demographic sub-

sets are a topic for future work. Finally, our findings are

focused on traits unique to autism. That is, the clinician-noted

behaviors that we extract are differentiated between those who

are clinically confirmed to have autism and those who are sus-

pected to have autism but have been clinically ruled out, not

neurotypicals.
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6. Tick, B., Bolton, P., Happé, F., Rutter, M., and Rijsdijk, F. (2016). Herita-

bility of autism spectrum disorders: a meta-analysis of twin studies.

J. Child Psychol. Psychiatry 57, 585–595. https://doi.org/10.1111/

jcpp.12499.

7. Antaki, D., Guevara, J., Maihofer, A.X., Klein, M., Gujral, M., Grove, J.,

Carey, C.E., Hong, O., Arranz, M.J., Hervas, A., et al. (2022). A phenotypic

spectrum of autism is attributable to the combined effects of rare variants,

polygenic risk and sex. Nat. Genet. 54, 1284–1292. https://doi.org/10.

1038/s41588-022-01064-5.

8. Wray, N.R., Lin, T., Austin, J., McGrath, J.J., Hickie, I.B., Murray, G.K., and

Visscher, P.M. (2021). From Basic Science to Clinical Application of Poly-

genic Risk Scores: A Primer. JAMA Psychiatry 78, 101–109. https://doi.

org/10.1001/jamapsychiatry.2020.3049.

9. Grove, J., Ripke, S., Als, T.D., Mattheisen, M., Walters, R.K., Won, H., Pal-

lesen, J., Agerbo, E., Andreassen, O.A., Anney, R., et al. (2019). Identifica-

tion of common genetic risk variants for autism spectrum disorder. Nat.

Genet. 51, 431–444. https://doi.org/10.1038/s41588-019-0344-8.

10. Skafidas, E., Testa, R., Zantomio, D., Chana, G., Everall, I.P., and Pantelis,

C. (2014). Predicting the diagnosis of autism spectrum disorder using gene

pathway analysis. Mol. Psychiatry 19, 504–510. https://doi.org/10.1038/

mp.2012.126.

11. Myers, S.M., Challman, T.D., Bernier, R., Bourgeron, T., Chung, W.K.,

Constantino, J.N., Eichler, E.E., Jacquemont, S., Miller, D.T., Mitchell,

K.J., et al. (2020). Insufficient Evidence for ‘‘Autism-Specific’’ Genes.

Am. J. Hum. Genet. 106, 587–595. https://doi.org/10.1016/j.ajhg.2020.

04.004.

12. Iakoucheva, L.M., Muotri, A.R., and Sebat, J. (2019). Getting to the Cores

of Autism. Cell 178, 1287–1298. https://doi.org/10.1016/j.cell.2019.

07.037.

13. Geschwind, D.H. (2008). Autism: Many Genes, Common Pathways? Cell

135, 391–395. https://doi.org/10.1016/j.cell.2008.10.016.

14. Abraham, A., Milham, M.P., Di Martino, A., Craddock, R.C., Samaras, D.,

Thirion, B., and Varoquaux, G. (2017). Deriving reproducible biomarkers

frommulti-site resting-state data: an Autism-based example. NeuroImage

147, 736–745. https://doi.org/10.1016/j.neuroimage.2016.10.045.

15. Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N., Bi-

gler, E.D., Lainhart, J.E., and Anderson, J.S. (2013). Multisite functional

connectivity MRI classification of autism: ABIDE results. Front. Hum. Neu-

rosci. 7, 599. https://doi.org/10.3389/fnhum.2013.00599.

16. Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A., and Mene-

guzzi, F. (2018). Identification of autism spectrum disorder using deep

learning and the ABIDE dataset. NeuroImage Clin. 17, 16–23. https://

doi.org/10.1016/j.nicl.2017.08.017.
Cell 188, 2235–2248, April 17, 2025 2245

https://github.com/dblabs-mcgill-mila/NLP-ASD
https://github.com/dblabs-mcgill-mila/NLP-ASD
https://doi.org/10.5281/zenodo.14851367
https://doi.org/10.5281/zenodo.14851367
https://doi.org/10.1016/j.cell.2025.02.025
https://doi.org/10.1016/j.cell.2025.02.025
https://doi.org/10.1001/jama.2017.17812
https://doi.org/10.1038/nn.3818
https://doi.org/10.1038/nn.3818
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1097/GIM.0b013e31815efdd7
https://doi.org/10.1111/jcpp.12499
https://doi.org/10.1111/jcpp.12499
https://doi.org/10.1038/s41588-022-01064-5
https://doi.org/10.1038/s41588-022-01064-5
https://doi.org/10.1001/jamapsychiatry.2020.3049
https://doi.org/10.1001/jamapsychiatry.2020.3049
https://doi.org/10.1038/s41588-019-0344-8
https://doi.org/10.1038/mp.2012.126
https://doi.org/10.1038/mp.2012.126
https://doi.org/10.1016/j.ajhg.2020.04.004
https://doi.org/10.1016/j.ajhg.2020.04.004
https://doi.org/10.1016/j.cell.2019.07.037
https://doi.org/10.1016/j.cell.2019.07.037
https://doi.org/10.1016/j.cell.2008.10.016
https://doi.org/10.1016/j.neuroimage.2016.10.045
https://doi.org/10.3389/fnhum.2013.00599
https://doi.org/10.1016/j.nicl.2017.08.017
https://doi.org/10.1016/j.nicl.2017.08.017


ll
OPEN ACCESS Article
17. Poulin-Lord, M.-P., Barbeau, E.B., Soulières, I., Monchi, O., Doyon, J., Be-

nali, H., and Mottron, L. (2014). Increased topographical variability of task-

related activation in perceptive and motor associative regions in adult au-

tistics. NeuroImage Clin. 4, 444–453. https://doi.org/10.1016/j.nicl.2014.

02.008.

18. Weinberger, D.R., and Radulescu, E. (2016). Finding the Elusive Psychiat-

ric ‘‘Lesion’’ With 21st-Century Neuroanatomy: A Note of Caution. Am. J.

Psychiatry 173, 27–33. https://doi.org/10.1176/appi.ajp.2015.15060753.

19. Arvidsson, O., Gillberg, C., Lichtenstein, P., and Lundström, S. (2018).

Secular changes in the symptom level of clinically diagnosed autism.

J. Child Psychol. Psychiatry 59, 744–751. https://doi.org/10.1111/

jcpp.12864.

20. Bzdok, D., Thieme, A., Levkovskyy, O., Wren, P., Ray, T., and Reddy, S.

(2024). Data science opportunities of large language models for neurosci-

ence and biomedicine. Neuron 112, 698–717. https://doi.org/10.1016/j.

neuron.2024.01.016.

21. American Psychiatric Association (2013). Diagnostic and Statistical

Manual of Mental Disorders, Fifth Edition (American Psychiatric Associa-

tion) https://doi.org/10.1176/appi.books.9780890425596.

22. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., and Stoyanov, V. (2019). RoBERTa: A Robustly Optimized

BERT Pretraining Approach. Preprint at arXiv. https://doi.org/10.48550/

arXiv.1907.11692.

23. Le, Q., and Mikolov, T. (2014). Distributed Representations of Sentences

and Documents. In Proceedings of the 31st International Conference on

Machine Learning (PMLR), pp. 1188–1196.

24. Beltagy, I., Peters, M.E., and Cohan, A. (2020). Longformer: The Long-

Document Transformer. Preprint at arXiv. https://doi.org/10.48550/arXiv.

2004.05150.

25. Bazoge, A., Morin, E., Daille, B., and Gourraud, P.-A. (2024). Adaptation of

Biomedical and Clinical Pretrained Models to French Long Documents: A

Comparative Study. Preprint at arXiv. https://doi.org/10.48550/arXiv.

2402.16689.

26. Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Ma-

thur, A., Schelten, A., Yang, A., Fan, A., et al. (2024). The Llama 3 Herd of

Models. Preprint at arXiv. https://doi.org/10.48550/arXiv.2407.21783.

27. Gemma Team, Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pa-

thak, S., Sifre, L., Rivière, M., Kale, M.S., and Love, J. (2024). Gemma:

Open Models Based on Gemini Research and Technology. Preprint at ar-

Xiv. https://doi.org/10.48550/arXiv.2403.08295.

28. Ostrolenk, A., Gagnon, D., Boisvert, M., Lemire, O., Dick, S.-C., Côté,
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participant recruitment
In the Québec public healthcare system, referrals for an autism spectrum disorder diagnosis for children are typically initiated by a

general practitioner or pediatrician. Preschool-aged children are first assessed by professionals within the local early intervention

care program, such as psycho-educators, specialized educators, and social workers. These professionals conduct screenings for

signs of autism in conjunction with the medical referral.

Clinical context
The Autism Spectrum Disorder Assessment Clinic at CIUSSS-Nord-de-l’ı̂le-de-Montréal (CIUSSS-NIM), Rivière-des-Prairies Hospi-

tal serves as the sole public healthcare entry point for children referred for an autism spectrum disorder diagnosis within a specifically

defined geographic area in Northern Montréal, Québec, Canada. This region experiences approximately 13,500 births annually. This

clinic benefits from a concentration of expertise not found elsewhere in Québec. However, children presenting severe neurodeve-

lopmental issues during infancy and early childhood (such as significant motor delay, severe global developmental delay, epilepsy,

clinical indicators of a genetic condition) are directed to a pediatric facility for assessment. Therefore, our participant sample approx-

imately represents a cumulative four-year incidence of children exhibiting apparent symptoms of autism warranting assessment,

without obvious detectable neurogenetic indicators.

Inclusion and exclusion criteria
1180 patients referred to the Autism Spectrum Disorder Assessment Clinic who received an autism spectrum disorder assessment

between January 1st, 2016 to December 31st 2019 were initially screened. We excluded 57 patients (4.8%) that did not have at least

two reports written by two different professionals, containing at least one full page of qualitative clinical description, either referral

reports and/or assessment reports. We excluded 43 patients (3.6%) for whom the presence of autism was still undetermined or un-

certain, meaning that the final diagnosis was not reached by the end of year 2019. This resulted in a total inclusion of 4272 reports

corresponding to 1080 participants. Of these 1080 participants, 429 received a diagnosis of autism while 651 did not receive a diag-

nosis of autism. The age of each participant was recorded at the time of each report; the average age of participants in our cohort was

7.0 years (standard deviation 3.9 years). See Table S3 for a more detailed breakdown of sex and age groups included in our cohort,

and see Table S4 for a tabulation of secondary diagnoses present. Tables S5–S7 provide additional accuracy results for our model,

stratified on the basis of these variables. For some demographic groups we see slightly degraded model prediction performance.

This is likely to be attributable to a smaller number of training examples present in these strata, the inherent diagnostic complexity

of these groups, or a combination of the two. For instance, this combination of factors is evidently present for the age bracket con-

sisting of subjects over 12 years of age, resulting in slightly lower classification accuracy compared to other more populated age

brackets in our cohort.

This clinical research project, number 2021-2058, was approved by the CIUSSS-NIM ethical committee on May 1st, 2020 and by

the CIUSSS-NIM direction of professional services on November 17th, 2020.
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METHOD DETAILS

Assessment format
The diagnostic assessment procedure at the Autism Spectrum Disorder Assessment Clinic is carried out by child and adolescent

psychiatrists, along with, depending on the clinical situation, a psychologist, a neuropsychologist, a speech therapist, an occupa-

tional therapist, and/or a psycho-educator. The evaluating professionals and the clinicians have between 5 to 20 years of experience

in autism assessments. Patients are assigned to clinicians randomly, and combinations of psychiatrists and professionals are shuf-

fled. The assessment procedure includes an in-depth developmental and psychiatric interview with the parents and the child, lasting

one to two hours, alongwith behavioral observation of the child. A standardized AutismDiagnostic Observation Schedule (ADOS-2)73

was typically performed, but may be skipped based on the extreme obviousness of the autism diagnosis or its absence following the

clinical interview and non-standardized observation. Supplementary assessments in psychology, neuropsychology, occupational

therapy, and speech therapymay be conducted. Interviews with daycare or school staff and/or observation of the child in their facility

is added when necessary to gather behavioral data from more ecological settings. Appointments are mainly conducted in French,

sometimes in English, or in French with the assistance of an interpreter. All ensuing assessment reports are written in French.

The diagnosis is established by consensus within the multidisciplinary team based on DSM-5 criteria. These diagnostic teams are

shuffled for every individual case. Clinical certainty is given priority over the child’s ADOS-2 score in cases of discrepancy.46 Reports

are written independently by psychiatrists and professionals. At the end of the assessment process, patients either receive a final

diagnosis of autism spectrum disorder, are cleared of autism with no diagnosis, or receive a differential neurodevelopmental or psy-

chiatric diagnosis. It is this final yes/no autism diagnosis that we used as our ground-truth target variable (classification outcome) for

languagemodel fine-tuning and subsequent interpretation. It is important to note that this final yes/no diagnosis is not contained any-

where within the reports themselves. In fact, the clinician writing the report has no knowledge of the future diagnosis at the time of

writing. The reports serve solely as a dispassionate account of observed behavior of the child or developmental history provided by

the parents, to be referenced by the diagnostic team at the time of consensus diagnosis.

Henceforth, we use the terminology ‘‘clinically confirmed’’ and ‘‘suspected but clinically ruled-out’’ to refer to the definitive yes/no

autism diagnosis decision as agreed upon by the aforementionedmultidisciplinary team of healthcare professionals. Since each sub-

ject who is referred to the clinic carries some suspicion of having autism, it is the task of the clinicians to definitively ‘‘confirm’’ or ‘‘rule

out’’ this suspicion. While diagnoses reported here represent a best estimate clinical assessment, these methods remain the gold

standard for diagnosis in autism.

Data format
Our data consists of raw qualitative clinical descriptions obtained directly from referral and assessment reports. These reports are

varied in formatting and content. However, they frequently contain sections relating to the reason for the evaluation, developmental

history as provided by parents, first-hand observations from the clinician upon interacting with the child, and miscellaneous notes

that may be of diagnostic interest, among others.

Referral Reports

The referral reports are authored by frontline referring professionals (33% of the total included reports) during their clinical routine

evaluation of the children and intended for the multidisciplinary assessment team. These professionals include general practitioners,

pediatricians, and early intervention program specialists (psycho-educators, specialized educators, social workers, speech thera-

pists). The professionals who refer children to the Autism Spectrum Disorder Assessment Clinic possess extensive exposure to neu-

rodevelopmental presentations and possess strong clinical and developmental expertise. Importantly, information contained in

referral reports is collated from several dozen different individuals, diminishing the risk of individual biases.

Assessment Reports

The assessment reports (67% of the total included reports) from the Autism Spectrum Disorder Assessment Clinic were articulated

by professionals who are experts in autism within their respective fields, including 10 psychiatrists who practiced at the clinic be-

tween 2016 and 2019 (44%of the included assessment reports were from psychiatrists) and other professionals: psychologists, neu-

ropsychologists, speech therapists, occupational therapists, and psycho-educators (a total of 56% of the included assessment re-

ports were from other professionals). The reports were written at the end of the autism spectrum disorder assessment of the children

as a detailed report intended for the patients and their referral doctors.

Data Ingestion and Anonymization

The reports were written in French by the healthcare professionals, typed on computers, printed, and then scanned into the hospital’s

medical software, prior to the study. Following a strict anonymization procedure carried out on-premises at CIUSSS-NIM by the clin-

ical research team, strictly only qualitative descriptions were extracted from the reports. The clinical team finalized these redacted

reports in PDF format. All standardized clinical information (e.g., from the ADOS-2 test, standardized tests in psychology, neuropsy-

chology, and speech therapy) was manually excluded by research assistants and verified by a clinician-researcher. Then, the data

analysis team, who never received access to the unredacted reports, stored these de-identified reports in secure computing facilities

locally at McGill University Brain Imaging Center (BIC), as well as at Mila Québec AI Institute. Due to the sensitivity of this medical

information regarding children, we are unable to publicly release verbatim excerpts from the reports. In lieu of these verbatim
e2 Cell 188, 2235–2248.e1–e7, April 17, 2025
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excerpts, we have summarized examples of highly autism relevant sentences (Figure 4A), as well as carried out numerous statistical

analyses to quantify the semantic content of every report in our dataset (Figures 4B and 5A–5D).

Data processing
Each of the 4272 health records from 1080 unique patients were scanned and converted to digital PDF format. While each report was

originally typed out on a computer by a healthcare professional, these reports were printed in hard copy with a variety of different,

non-standardized document formats. This meant that the physical placement of text on the page and the location of key pieces of

information, as well as formatting of the text, such as font size and type, could be highly variable from report to report. To faithfully

extract the raw text, ignoring differences in document formatting and visual artifacts, we turned to state-of-the-art optical character

recognition (OCR) from the Google Cloud Platform ‘‘Document AI’’ API. No information was stored on Google’s servers. This

advanced tool for OCR computer vision ensured that we could automatically convert the text contained within our complex PDF files

to simple text files with high fidelity. As a preliminary step, we cleaned the OCR-extracted text files by removing repetitive special

characters (such as asterisks, dashes, dollar signs, or tildes) that simply represented minor anomalies in the OCR process. We

did not perform any additional steps for text cleaning, such as converting to lowercase or removing numbers or stop words, since

it has been noted that pre-trained language models perform optimally even when given text in its most raw format.74 These minimally

cleaned text files could then be easily ingested by our language model as input data.

With these text files in hand for each report, we next wanted to segment each report into individual sentences, to enable straight-

forward interpretation and identification of key semantic elements contained within each report. To accomplish this sentence-level

segmentation,we relied onastraightforward rule:wewould split each sentence at aperiod, unless the resulting sentencewas30char-

acters in length or less, inwhich case that shorter sentence stubwas added to theprevious sentence. This ensured that each sentence

contained a sufficient amount of meaningful semantic content as a solid starting point for our language model to analyze. This pre-

processing step applied to a very small minority of sentences, of which the vast majority consisted of titles, section headings, or erro-

neous punctuation introduced by OCR artifacts. No sentences were discarded as a result of this pre-processing. Each report con-

tained a median of 1196 words and 68 distinct sentences. Each sentence contained a median of 15 words, across all reports.

Pre-trained language model
We chose the ‘‘Hugging Face’’ Transformer67 library to deploy tokenizers and model weights for our pre-trained language model.

There were numerous options for our selection of pre-trained language model; critically, we required a transformer encoder archi-

tecture that had the capacity and pre-training exposure necessary to effectively parse a wide range of diverse natural language in-

puts. Ultimately, we selected the FlauBERT language model75 that was pre-trained on a total of 12.8 billion word tokens from general

language sources, amounting to a total of �489 million unique sentences.

FlauBERT is a French-language adaptation of the widely utilized RoBERTa architecture, sharing the same underlying model archi-

tecture. The key distinction lies in FlauBERT’s pre-training: it incorporates a broader corpus of French text, in addition to the internet-

scale (primarily English) data sources used to pre-train RoBERTa. We will henceforth refer to our pre-trained model selection as

‘‘RoBERTa’’, as this model is more readily recognized amongst the broader NLP community. In total, the RoBERTa language model

contains 138 million distinct parameters, which were all pre-trained in concert on the aforementioned training corpus based on a

masked language modeling objective (cf. below). These 138 million parameters were spread across 12 layers, with 12 independent

self-attention heads per layer. Individual words were ‘‘tokenized’’ according to the established Moses tokenizer76 and optimized for

the French language (as our clinical reports). These tokenized words could then be fed into the language model and projected into

increasingly relevant ‘‘embedding’’ representations as their associated information flowed through the model layers. The term

‘‘embedding’’ refers to numerical vector representations of semantic elements such as words, sentences, or even full reports, which

are given meaning and are interpretable by our language model.

Pre-training was accomplished with the masked languagemodeling objective, wherein 15% of the words in an input sequence are

masked, and the model is architected to learn to predict the deliberately left out (masked) words. We also experimented with lan-

guage models that were pre-trained on psychology and healthcare-relevant texts (e.g. PsychBERT,77 ClinicalBERT,78 BioBERT.79

However, we observed poor diagnosis classification performance after fine-tuning on our autism reports dataset. This is likely

because these domain-specific language models were pre-trained on much smaller datasets.

On the other hand, long context models such as Longformer24 with a context window of 4096 tokens did yield some promising

report classification results (see Figure S1). However, the implementation of their attention mechanisms, such as sliding window

attention in the case of Longformer, pose a challenge for effective interpretability in our present setting. In particular, the ability to

produce a singular dense report embedding, while effective for classification, does not allow for the level of granularity required

for effective interpretability of individual semantic elements. Once we zoom in on the sentence level, our unit of interpretability,

enabled by our bespoke interpretability pipeline, RoBERTa’s context window of 512 tokens is more than sufficient, achieving clas-

sification performance on par or exceeding these long context models.

Language model architecture enhancements
While pre-trained language models afford advanced natural language capabilities and thus enable ground-breaking text classifica-

tion performance, their complex inner workings elude simple interpretation. In their unmodified state, it is challenging to understand
Cell 188, 2235–2248.e1–e7, April 17, 2025 e3
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the motivating factors that would lead an out-of-the-box language model to classify a multi-page report as resulting in a diagnosis of

autism. Aiming to address some interpretational shortcomings of widespread deep language models,80–82 we decided to split each

report into single sentence segments, as we described previously. By forcing the language model to focus its information processing

capabilities on compact human interpretable units, such as sentences, we build inherent interpretability into the modeling objective

from the beginning. These single sentence segments were fed into our pre-trained language model (i.e., keeping the previously ob-

tained set of model parameters fixed) in order to extract asmuch semantic content as possible. Therefore, the internal representation

of our pre-trained language model instantiates an autism-relevant sentence embedding.

From there, as an extension of this languagemodel framework, we introduced a trainable single-head attention83–85 neural network

layer, which has the potential to selectively pinpoint and up-weight certain sentences contained within a report. The purpose of this

layer is to refocus the representational capacity of the language model on the report-level, while retaining the ability to assess the

influence of individual sentences on the autism diagnosis classification. Specifically, the attention mechanism projects the input ma-

trix of autism-relevant sentence embeddings (from the fine-tuned language model) X ˛RNT3demb into key (K), query (Q), and value (V )

subspaces using trainable weight matrices (WK ;WQ;WV ˛Rdemb3demb ), where demb denotes the number of dimensions in the embed-

ding space (768 in our case) andNT refers to the number of tokens/words in a sentence.We then calculate the ‘‘attention budget’’ that

the transformer layer affords to each individual sentence by all the other sentences in a report by multiplying the key and query vec-

tors together (dot product multiplication). This produces a square attention score matrix A˛RNS3NS , where NS is the number of sen-

tences in a report and the indices i; j correspond to the attention from sentence i on sentence j, in a given report, with the constraints:

Ai;j R0
XNS

j = 1

Ai;j = 1

The value vectors are then multiplied by their corresponding attention scores from this attention matrix, which act as importance

weights. We finally take the mean of these weighted sentence/value vectors to obtain a single embedding vector representation of

each report document. In essence, the key, query, and value vectors serve as transformations of the input sentences into separate

input-variant latent spaces, allowing us to automatically learn, and preferentially boost, meaningful relationships between the sen-

tences in a report.

K = XWK ;K ˛RNS 3demb
Q = XWQ;Q˛RNS 3demb
V = XWV ;V ˛RNS 3demb
A = Attention = softmax

�
QKTffiffiffiffiffiffiffiffiffiffi
demb

p
�

Xoutput = AV;Xoutput ˛RNS 3demb
xreport =
1

NS

XN
i = 1

Xoutputi

The benefits of this specialized language model architecture were two-fold. First, we directly ensure that the embedding represen-

tation of each report is composed of a diagnosis-contingent semantic mixture of sentences, from a report at hand, proportional to the

importance of those sentences in terms of carrying information useful for detecting autism cases. Second, since we use a single

attention head to weight the importance of each sentence in a report, we can directly interpret the unique attention matrix produced

by the attention layer for each report. Sentences that were flagged as most highly attended according to this matrix were, by con-

struction of our language model architecture, most important for the classification of text from reports with the autism diagnosis.

These insights were derived on a per report basis, such that we could identify the most salient sentences in the context of a given

report. In sum, we have segmented each report into individual sentences and used a pre-trained language model to extract the
e4 Cell 188, 2235–2248.e1–e7, April 17, 2025
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semantic content from those sentences for the purpose of autism detection. We subsequently brought to bear a single-head atten-

tion layer to select and preferentially up-vote specific sentences that most contribute to the diagnosis classification.

Fine-tuning framework to spawn an autism-aware embedding representation
Capitalizing on our bespoke architecture, we next fine-tuned the pre-trained language model and our single-head attention layer on

our corpus of 4272 reports on cases with suspected autism. The target modeling outcome of this fine-tuning was to classify the ul-

timate diagnosis of the patient from a single report alone. To accomplish this distinction between clinically confirmed versus

suspected but initially ruled-out autism, we passed the attention-weighted report embeddings through a final fully connected layer

followed by a sigmoid to issue an autism probability. This probability was then comparedwith the final diagnosis using a binary cross-

entropy loss. This loss function comprised our training objective. It is important to reiterate that these reports do not contain any

explicit or hinted judgment as to the eventual diagnosis, as all information regarding diagnoses and standardized scores were manu-

ally removed during pre-processing and the anonymization process for each report. In terms of hyperparameter choices, we fine-

tuned on our training set for a total of 2 epochs, using a batch size of 8 reports at a time, and a learning rate of 1x10-5 with the AdamW

optimizer.86,87 Hyperparameters were chosen via grid search on a small held out validation set (5% of reports). Each sentence was

truncated or padded to a length of 64 tokens, with padding tokens representing irrelevant entries. Further, the number of sentences

per report was also truncated or padded to 64, using the same padding scheme. Embeddings (corresponding to words or sentences)

were given a representational dimensionality of 768 dimensions.88

In order to allow our language model pipeline to act on sentences as the unit of inference and interpretation, we averaged the word

embeddings across embedding dimensions from the output of our fine-tuned language model to produce sentence embeddings of

identical dimensionality (768 dimensions in all cases). Then, once the languagemodel word embeddings had been abstracted to sen-

tence embeddings, our single-head attention module could act on the level of sentences to identify the most autism relevant senten-

ces in a given report. Finally, sentences within each report document were combined into overall report embeddings, using a

weighted average where the weights were ascertained by the single-head attention module.

Our model was fine-tuned in an end-to-end fashion: the parameter weights of the pre-trained language model, our single-head

attention layer, and the final classification layer were all trained simultaneously. To ensure the validity of our accuracy results, we per-

formed a rigorous 5-fold cross-validation procedure. Within each cross-validation fold, 80% of the reports were randomly chosen to

comprise our training set for fine-tuning, while the remaining 20%of reports were set aside as our test set to evaluate the performance

of our model on new, unseen reports. It is important to note that we grouped multiple reports from the same patient into either the

training or the test sets, exclusively, to ensure independence between the training and test sets. That is, a given subject’s information

only ever appeared either exclusively in the training set or exclusively in the test set. A diagnosis classification accuracy for eachcross-

validation fold was calculated using the held-out test set at the end of the fine-tuning process; averaging across these 5 fold-wise ac-

curacies yielded the prediction performance that is expected for new, unseen reports from the same underlying distribution. Baseline

models included traditional bag of words (BOW) in whichword counts for eachword in a report were used as input features for a linear

(naı̈ve Bayes) or non-linear (random forest) classifier, and a Doc2Vec23 model in which reports are projected into report embeddings

using a simple neural network. Hyperparameters for these baseline models were also optimized via grid search and average accu-

racieswere again computedwith a rigorous 5-fold cross-validation procedure, in the same fashion as our languagemodel validations.

Larger transformermodels suchasLlama3.18B26 andGemma7B27were fine-tunedusing low-rankadaptation (LoRA)89with a rankof

8 and an alpha parameter of 8. Zero shot prediction using these larger models incorporated a trained linear classifier (logistic regres-

sion) on top of the raw model embeddings; the parameters of the models themselves were not adjusted in this setting.

Using the GPU cluster of Mila Quebec AI Institute, we had the necessary compute resources to perform a full fine-tuning of our

RoBERTa languagemodel. However, LoRAwould be an appropriate choice for fine-tuningmuch larger languagemodels or for those

without access to sufficient compute resources to perform full fine-tuning on RoBERTa. Since LoRA is a low-rank approximation of

full fine-tuning, full fine-tuning as performed here represents an upper bound on the performance that could be attained for a given

languagemodel.89,90 Regardless, fine-tuning of some kind is necessary to reach useful diagnostic classification performance. Simply

attempting to classify the pre-trained embeddings generated from powerful language models such as Gemma 7B or Llama 3.1 8B

without fine-tuning using a linear classifier (zero-shot learning) yielded only slightly above-chance classification performance on our

corpus of reports (see Figure S1). Therefore, we concluded that fine-tuning appears to be necessary for the construction of an

embedding space that allows for the direct comparison of sentences on the basis of their autism-relevance. Generic languagemodel

embedding spaces are demonstrably unsuitable for this task.

QUANTIFICATION AND STATISTICAL ANALYSIS

Tactics tailored for model interpretability
After successfully refining our language model on the corpus of autism reports, we wanted to isolate and interpret the driving ele-

ments of autism diagnosis, as verbalized by clinicians and as extracted by our model. First, we inputted our entire corpus of reports

using our fine-tuned language model to generate sentence embeddings and sentence-instantiated attention matrices. Based on

these sets of attention scores A, we get a sense of how the language model appraises the information content in articulated state-

ments that retrace the clinical thought process—a necessary step toward providing a quantitative answer as towhat really matters in
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distinguishing a child with autism. With these embeddings for every sentence in our corpus, we next wanted to investigate and visu-

alize the sentence embedding instances residing in the language model space. Specifically, we analyzed the 768-dimensional sen-

tence embedding representations from the last hidden state (LHS) — corresponding to the 12th layer — of the pre-trained language

model. We performed a PCA decomposition on these LHS embeddings to reduce the dimensionality to two dimensions for simple

visualization.

Next, we sought to shed light onto the inner workings of the languagemodel itself; specifically, wewished to bring to the surface the

flow of information through the various layers, and reveal at what consecutive processing stage themodel begins to extract meaning-

ful semantic information useful for the autism diagnosis classification task. To accomplish this goal, we extracted the sentence

embedding representations from each neural network layer (starting at the first layer, all the way to the 12th and final layer), and

computed their mean per report, across the 768 embedding dimensions, to generate an overall report embedding. We then used

these layer-wise report embeddings to train linear classifiers (logistic regression models, one model per layer) to again predict the

diagnosis. Similarly to our languagemodel fine-tuning evaluation, we implemented a rigorous 5-fold cross-validation scheme to eval-

uate these logistic regression models on unseen report embeddings. To evaluate the layer-wise model performance, we computed

an out-of-sample AUC score by averaging the AUC across folds for each layer individually.

Subsequently, we endeavored to analyze the semantic content of the reports themselves. We began by identifying the most

‘‘important’’ sentence per report as pinpointed by our single-head attention layer. The rule for identifying themost important sentence

was straightforward: whichever sentence had the highest overall attention score across all other sentences in a report, as calculated

by summing the rows of attention matrix A, would be deemed the most ‘‘important’’.

max
j

XNS

i = 1

Ai;j
where i and j denote the rows and columns of the attention matrixA
 (sizeNS 3NS, cf. above notation), respectively. We next wanted to

identify broad features in themost important sentences in each report that differ between patients that were diagnosedwith autism and

those sentences thatwere less discriminatory. To examine thesedifferences,wecounted the number of times a givenword appeared in

the top attended sentence in all the reports. Next, for each word we divided the total number of occurrences of that word in the autism-

associated report top sentencesby the total number of occurrences of that sameword in the top sentences from reports not associated

with an autism diagnosis. These totals were calculated across our entire corpus of reports. This approach yielded a relative frequency

differential for the usage of certain words in the most autism-relevant sentences across reports, of direct interpretational value.

Evaluation against external diagnostic criteria
For our final set of analysis steps, we wanted to assess the utility of external diagnostic criteria in the context of our language model-

parsed clinical intuition, as a litmus test. Further, we wanted to perform an explicit comparison of these external criteria to our lan-

guage model-identified semantic elements contained within our corpus of reports. The rationale for this analysis was that the deci-

sion-making process of language models can be inherently difficult to interpret, just by itself. To overcome some shortcomings of

currently existing language model frameworks,20 we anticipated that by bringing well-established external knowledge to the table

and juxtaposing it with the formed autism-aware semantic embedding space spanned by our language model, we could potentially

throw light onto the inner workings of our languagemodel as well as, enabled by this explainability approach, empirically revisit these

standard clinical guidelines.

In particular, since our language model is, by its nature, able to process any natural language input, we were able to generate sen-

tence embeddings from text descriptions of each of the DSM-5 autism criteria. Crucially, we could then evaluate the established

criteria explanation embeddings by comparing them to the embeddings of our previously identified diagnosis-critical sentences

from our reports. Hence, this explainability strategy enabled us to bring together the embeddings of the widely accepted DSM-5 cat-

alog and those of our present report sentences, to make sense of what our language model did in fact learn during the model fine-

tuning process. To carry out this comparison against externally established sources of knowledge, we turned to the cosine similarity

metric. This metric has been used extensively in a variety of NLP contexts to evaluate the semantic similarity between any two em-

beddings.29,30 Conceptually, the rationale behind this metric is that vectors pointing in similar directions in the high-dimensional se-

mantic embedding space are taken to carry similar meanings. Practically, a cosine similarity of -1 indicates opposite semantic infor-

mation, 0 indicates no relation in meanings, and +1 indicates identical semantic content for a given pair of sentence embeddings.

Thus, this metric served as an easily interpretable tool for assessing the similarity of specific sentences, in the context of the

autism-aware embedding space of our language model. The cosine similarity of any two semantic embedding vectors b and c is

found by calculating the cosine of the angle between them:

cosðqÞ =
b$c

jjbjjjjcjj =
Pd
i = 1

biciffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i = 1

b2
i

s ffiffiffiffiffiffiffiffiffiffiffiffiPd
i = 1

c2
i

s
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where d denotes the dimensionality of the semantic embedding v
ectors, and i serves as an index for each dimension. Precisely, we

calculated cosine similarities between all seven of the DSM-5 autism criteria, and the most diagnosis-relevant sentence in each

report. In so doing, we associated each report in our corpus with seven distinct cosine similarity scores, despite the fact that the

DSM-5 criteria were never administered in our participant cohort.

While looking at the distributions of the raw values of the computed similarity scores between non-diagnosed and diagnosed

autism groups of children was informative, we wanted to directly validate that these similarity scores were truly meaningful for autism

diagnosis. To achieve this goal, we fitted an LDA model to once again predict the diagnosis for each report. This LDA model was

based on an implementation from the scikit-learn Python package. LDA is a model that aims to find a linear combination of input

features that best separates the groups while maximizing the between-group variance and minimizing the within-group variance

(in our case, a diagnosis of autism or a non-confirmed diagnosis).91 As input features to this LDA model, we used the input feature

vector of seven cosine similarities (for each report) corresponding to the seven DSM-5 criteria. In modeling the data, LDA assumes

that the group-conditional probability distributions are two normal distributions with differing means m1;m2 and covariance S shared

between the two groups. The decision boundary is thus the solution (y) to the following linear equation:

log p1 � 1

2
mT
1S

� 1m1 + yTS� 1m1 = log p2 � 1

2
mT
2S

� 1m2 + yTS� 1m2
where m and m are the group-wisemeans for each of our 7 cosine
1 2 similarities,S is the covariancematrix shared across internal class

representations, andp is a constant indicating the prior proportion of the labels for each respective group in our dataset. Bymeans of

this LDA model, we wanted to concretely evaluate how the set of the 7 DSM-5 criteria, in the context of our autism-aware internal

language model representation, contribute to achieving an accurate autism classification in children. We assessed this LDA model

trained on the DSM-5 criteria cosine similarities using a rigorous 5-fold cross-validation framework, in an identical format to our pre-

vious cross-validation schemes, and evaluated the model performance (AUC) in telling the two groups apart for each fold on unseen

independent reports. To determine the direction of association for each of the DSM-5 criteria similarities, we correlated the raw

cosine similarities of each criterion with the LDA linear combination of all of these inputs, that is the LDA ‘‘scores’’ for each observa-

tion. Since this linear combination is definitionally the most discriminative transformation of the data under the LDA model, the direc-

tionality and strength of these correlations revealed which DSM-5 criteria in our language model space are most useful for predicting

a diagnosis of autism, conditioning on the previously derived semantic embedding space. These ensuing results served to confirm

the prior analysis of the raw group-wise cosine similarities for each of the DSM-5 criteria.

As a negative test, to be certain that our most attended sentences per report were indeed uniquely useful for the diagnosis of

autism and the comparison to external criteria, we reiterated the entire LDA procedure, but this time selected a random sentence

from each report instead of the top attended sentence and calculated the cosine similarities between these random sentences

and the DSM-5 criteria. We then re-trained and re-evaluated our LDA model on these new cosine similarities. This negative control

confirmed that our attention-selected important sentences were in fact particularly useful for predicting a diagnosis of autism and as

a comparison to external diagnostic criteria, in this sensitivity analysis. Taken together, these out-of-sample validation investigations

served to confirm the fundamental soundness of the key autism-critical sentences identified by our explainable language model ar-

chitecture, in addition to confirming the generalized trend of the directionality of the established DSM-5 criteria with regards to autism

diagnosis. Through this methodology, we were able to successfully concretize abstract concepts in a tangible and fully quantitative

fashion, to empower rigorous comparison and evaluation of those concepts.
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Supplemental figures

Figure S1. Transformer language models offer performance gains on autism diagnosis classification after fine-tuning on healthcare pro-

fessional reports, related to Figure 2

Out-of-sample benchmarking of predicting autism diagnosis from unstructured healthcare professional reports. Bar height indicates the average prediction

performance (accuracy or F1 score), while the whiskers indicate the variability (one standard deviation) of the metric after fitting the model independently in five

different cross-validation folds. Solid-colored bars correspond to classification accuracy, whereas bars with diagonal stripes correspond to F1 score, for the

same model. Transformer-based language models have been outlined in black, and our custom sentence interpretable language model is shaded green. As in

Figure 2A of the main text, legacy NLP approaches (bag of words [BOW], Doc2Vec), have been compared with various leading transformer model architectures.

These modern languagemodels have been evaluated in a zero-shot setting (raw embeddings followed by a fitted linear classifier), as well as following fine-tuning

on our corpus of text reports (using low-rank adaptation [LoRA]).
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Figure S2. Predicting random outcomes in our original transformer model yields random results, related to Figure 5

(A) After generating sentence-level embeddings from our random label fine-tuned language model for every report, a PCA decomposition of these embeddings

does not show obvious structure. Each point in the PCA plot corresponds to a single sentence and is colored according to the random ‘‘diagnosis’’ label.

(B) Identical PCA plot of sentence-level embeddings as shown in (B), now with each sentence embedding colored by the actual autism diagnosis (cf. Figure 2C in

the main text). No further structure is revealed after performing this labeling.

(C) After passing each DSM-5 autism criterion description (A1–B4), through our random label fine-tuned model and obtaining a sentence-level embedding

representation for each criterion, we obtain a distribution of cosine similarities between the embedding of each criterion and themost attended sentence for each

of our reports. This distribution is represented by a density plot as well as a boxplot corresponding to the interquartile range for the cosine similarities between the

DSM-5 criteria and the most attended sentence in each report. These distributions are divided based on the final diagnosis for each report (autism versus non-

autism).

(D) ROC curve showing the out-of-sample classification performance on unseen reports of the LDA model trained on the cosine similarities of each DSM-5

criterion and the most attended sentences in each report. These cosine similarities to the most attended sentences (purple line) perform just as poorly on this

diagnosis classification task as cosine similarities to random sentences from each report (teal line). This reveals that these cosine similarities are not meaningfully

relevant to autism diagnosis classification.
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Figure S3. Predicting age differences in our original transformer model yields autism-irrelevant results, related to Figure 5

(A) After generating sentence-level embeddings from our age group fine-tuned language model for every report, a PCA decomposition of these embeddings

shows some clear age-specific structure. Each point in the PCA plot corresponds to a single sentence and is colored according to the age group label.

(B) Identical PCA plot of sentence-level embeddings as shown in (B), now with each sentence embedding colored by autism diagnosis (cf. Figure 2C in the main

text). While there may be age-specific structure in this embedding space, this generated embedding space does not appear to be autism-relevant.

(C) After passing each DSM-5 autism criterion description (A1–B4), through our age group sensitive model and obtaining a sentence-level embedding repre-

sentation for each criterion, we obtain a distribution of cosine similarities between the embedding of each criterion and the most attended and age-critical

sentence for each of our reports. This distribution is represented by a density plot as well as a boxplot corresponding to the interquartile range for the cosine

similarities between the DSM-5 criteria and themost attended sentence in each report. These distributions are divided based on the final diagnosis for each report

(autism versus non-autism).

(D) ROC curve showing the out-of-sample classification performance on unseen reports of the LDA model trained on the cosine similarities of each DSM-5

criterion and the most attended sentences in each report. These cosine similarities to the most attended sentences (purple line) perform just as poorly on this

diagnosis classification task as cosine similarities to random sentences from each report (teal line). In this control analysis, the cosine similarities are hence not

meaningfully relevant to autism diagnosis classification.
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