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Connectivity alterations in autism reflect functional
idiosyncrasy
Oualid Benkarim 1✉, Casey Paquola1, Bo-yong Park 1, Seok-Jun Hong 2,3,4, Jessica Royer1,

Reinder Vos de Wael1, Sara Lariviere 1, Sofie Valk5,6, Danilo Bzdok 1,7,8, Laurent Mottron 9 &

Boris C. Bernhardt 1✉

Autism spectrum disorder (ASD) is commonly understood as an alteration of brain networks,

yet case-control analyses against typically-developing controls (TD) have yielded incon-

sistent results. Here, we devised a novel approach to profile the inter-individual variability in

functional network organization and tested whether such idiosyncrasy contributes to con-

nectivity alterations in ASD. Studying a multi-centric dataset with 157 ASD and 172 TD, we

obtained robust evidence for increased idiosyncrasy in ASD relative to TD in default mode,

somatomotor and attention networks, but also reduced idiosyncrasy in lateral temporal

cortices. Idiosyncrasy increased with age and significantly correlated with symptom severity

in ASD. Furthermore, while patterns of functional idiosyncrasy were not correlated with ASD-

related cortical thickness alterations, they co-localized with the expression patterns of ASD

risk genes. Notably, we could demonstrate that patterns of atypical idiosyncrasy in ASD

closely overlapped with connectivity alterations that are measurable with conventional case-

control designs and may, thus, be a principal driver of inconsistency in the autism con-

nectomics literature. These findings support important interactions between inter-individual

heterogeneity in autism and functional signatures. Our findings provide novel biomarkers to

study atypical brain development and may consolidate prior research findings on the variable

nature of connectome level anomalies in autism.
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Autism spectrum disorder (ASD) is one of the most com-
mon and persistent neurodevelopmental conditions.
Behaviorally diagnosed on the basis of clinical observa-

tions and standardized tools assessing atypical communication,
social interaction, and sometimes restricted and repetitive beha-
viors and interests1, the broad umbrella term of ASD has resulted
in a steady increase in autism prevalence2. This increase in
diagnostic sensitivity has on the other hand led to increasing
recognition of the heterogeneity of diagnosed individuals3–5, and
challenges for specificity6. This high variability is present at the
phenotypic level of behavioral symptoms and at the level of
genetic mechanisms previously associated with ASD7–9, and
renders the study of autism particularly challenging. As etiology
and pathophysiology remain largely unclear and similarly het-
erogeneous, efforts have increasingly shifted to neuroimaging
techniques to identify intermediary autism phenotypes10,11. It is
hoped that these can potentially consolidate molecular pertur-
bations and behavioral perspectives on ASD and identify bio-
markers of symptom severity.

Fueled by the increased availability of data sharing
initiatives12–15, numerous neuroimaging studies based on resting-
state functional magnetic resonance imaging (rs-fMRI) have
indicated that autistic individuals often present with a mosaic
pattern of connectivity alterations between distributed cortical
regions relative to typically developing (TD) controls12,16–19.
These connectivity alterations often manifest in the form of
connectivity reductions in both higher order association cortices
as well as sensory and motor regions, and sometimes co-occur
with patches of connectivity increases between cortical and sub-
cortical nodes20. However, other research has also emphasized (i)
little overlap between reported results, (ii) variable patterns of
hyper/hypo-connectivity, and (iii) an impact of preprocessing
choices as well as subject-specific head motion and other con-
founds on observed findings20–25. Inconsistent findings have also
been attributed to the use of conventional case-control designs in
connectomics research in autism, which assume within-group
homogeneity26,27. In addition to efforts that attempt to address
this heterogeneity by subtyping ASD individuals into more
homogeneous groups4,5, nascent literature has emphasized the
importance to study interindividual variability of functional
connectivity patterns in ASD compared to TD28–30. Inter-
individual variability in connectivity may logically follow the
interindividual variability of activation previously demonstrated
in perceptual and motor domains31,32. This body of work sug-
gests that such idiosyncrasy may be an important feature of
functional connectome organization in ASD, with greater varia-
bility in functional topography among ASD individuals relative to
TD32. At the group level, this may potentially impact the analysis
of connectivity differences between ASD and TD when assuming
an identical alignment between the functional and structural
domains among individuals. In other words, anatomical align-
ment does not guarantee correspondence of intrinsic functional
profiles. Ignoring this phenomenon may lead to losing subject-
specific features of network organization at the group level33,34. In
ASD, given the highly idiosyncratic nature of the functional
connectome, this is even more pronounced29, leading to spurious
differences in connectivity that might be better explained when
taking into consideration this heterogeneity35,36.

Although recent work has suggested an idiosyncratic organi-
zation of the functional connectome in ASD28–30, here we expand
these approaches in several important ways. First, we developed a
novel multi-marker profiling of idiosyncrasy, based on measures
of spatial variability, connectome manifold analysis as well as
probabilistic approaches to characterize the uncertainty of
subject-specific functional topographies. These descriptors com-
prehensively profiled differences in idiosyncrasy between ASD

and TD and provided the basis for an assessment of associations
to age and symptom severity. To furthermore identify structural
and potential molecular factors that give rise to the spatial pat-
terns of ASD-related network idiosyncrasy, we correlated idio-
syncrasy findings in ASD against MRI-based cortical thickness
and curvature findings as well as postmortem gene expression
information. Indeed, prior research has demonstrated atypical
cortical development in ASD37,38, with genetic risk factors likely
to play a major role in brain anatomy and connectivity
abnormalities39. Finally, we tested our main hypothesis and
assessed how idiosyncrasy may relate to connectivity alterations
in ASD vis-a-vis healthy controls observed at the group level40,41.
Specifically, we conducted a group-level analysis to study func-
tional connectivity differences between ASD and TD, capitalizing
on prior graph theoretical measures22, with and without con-
sidering idiosyncrasy.

Results
We studied idiosyncrasy based on rs-fMRI data from both waves
of the Autism Brain Imaging Data Exchange (ABIDE I and
II)12,13, a multisite data-sharing initiative. Specific site inclusion
criteria and rigorous data quality control as in prior work11,42,43

resulted in a total of 329 participants (157/172 ASD/TD) from
five different sites (see Supplementary Tables 1, 2). Our image
processing strategy involved the mapping of functional signals to
cortical surfaces as well as surface-based spherical alignment44, on
which functional connectivity matrices were calculated at a
single-subject level. Diffusion map embedding, a nonlinear
dimensionality reduction technique that projects regions into a
low-dimensional space governed by similarity in connectivity
profiles45,46 identified a common low-dimensional manifold
where individual embeddings were clustered into seven intrinsic
connectivity networks (ICNs) using a Gaussian mixture model.
Connectivity idiosyncrasy was characterized with two com-
plementary features, namely the analysis of spatial shifting on the
cortical surface meshes and the analysis of dispersion in
connectome-based manifolds. Descriptors were computed relative
to a reference embedding (and its corresponding clustering) built
by averaging all individual connectivity matrices (see Fig. 1a).
Findings corrected for the site, age, and sex unless otherwise
specified. Further information about the dataset, image proces-
sing, and idiosyncrasy descriptors is provided in the Methods
section.

Idiosyncrasy is characterized by the shifting of functional
networks in physical and embedding spaces. Idiosyncrasy was
assessed through the quantification of surface distance (SD) and
diffusion distance (DD). In brief, SD is the geodesic distance from
a given point to the closest point in the corresponding reference
network (see Fig. 1a). These geodesic distances were calculated
along the cortical surface using Dijkstra’s algorithm3,46. DD, on
the other hand, profiles idiosyncrasy in terms of the similarity in
the connectivity patterns across individuals and with the cano-
nical reference in the embedding space (see Idiosyncrasy
descriptors section). Both SD and DDs are widely used measures
that prior studies have shown to accurately capture differences in
spatial and embedding domains47–50, respectively. Here, we
leveraged these measures to provide a careful and complementary
depiction of idiosyncrasy in terms of spatial shifting and con-
nectivity similarity. Both approaches showed increased idiosyn-
crasy in ASD relative to TD in medial and lateral prefrontal
regions in both hemispheres, with DD showing more marked
effects bilaterally in the precuneus and angular gyrus (see Fig. 1b).
Interestingly, ASD also showed bilateral reductions in idiosyn-
crasy compared to TD in lateral temporal cortices.
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We complemented the surface-based analysis with an assess-
ment of idiosyncrasy at the network level to determine if observed
differences are related to spatial variability or to differences in the
size of the ICNs. Here, we computed mean surface distance
(MSD) to compare the locations of each ICN in each individual to
its corresponding reference network (see Supplementary Fig. 1).
Higher MSD values indicate that a given individual network
deviates from the corresponding reference network. In both ASD
and TD, the visual network (VN) showed the least idiosyncratic
organization (i.e., lowest MSD), whereas the ventral attention

network (VAN) had the most idiosyncratic organization (i.e.,
highest MSD). These results indicate that idiosyncrasy is
network-specific. Comparing groups, we found significant
differences after FDR correction in the dorsal attention (DAN,
p= 0.005), default mode (DMN, p= 0.003), somatomotor (SMN,
p= 0.009), and VAN (p= 0.002) networks, with ASD showing
increased MSD relative to TD. Across the whole cortex,
individuals with ASD also showed higher spatial shifting than
TD (p= 0.002). Similar findings were also obtained when
quantifying spatial shifting using Dice and Jaccard overlap

Fig. 1 Spatial shifting and diffusion distance of intrinsic connectivity networks in ASD and TD. a Proposed workflow for intrinsic connectivity
identification and idiosyncrasy characterization. b Statistical t-maps of surface (SD) and diffusion (DD) distance differences and their Pearson’s correlation
(top), and areas showing significant idiosyncrasy differences in SD and DD (bottom). Shaded areas around the regression line denote a 95% confidence
interval.
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measures. As higher MSD (and lower Dice/Jaccard) may also
indicate that individual networks span larger/smaller portions of
the cortex relative to the reference network because of hyper- or
hypo-connectivity, we also analyzed between-group differences in
network size. Notably, however, we did not find significant
differences suggesting that findings were due to idiosyncrasy
rather than connectivity differences per se (see Supplementary
Table 3). Finally, all these measures are computed relative to a
reference embedding that may have an impact on our results. In
order to assess the robustness of our results to the reference
embedding, we used bootstrapping to build different reference
embeddings based on 50% of the samples in our dataset. Group-
wise distributions of average Dice, Jaccard scores, and MSD
across the whole cortex did not show any overlap (see
Supplementary Fig. 2), indicating that our results are robust to
the reference embedding.

We further contextualized idiosyncrasy using a probabilistic
framework for each ICNs as shown in Fig. 2. Qualitatively, we
observed more spreading of the spatial probability maps in ASD
at the group-level, particularly in DMN and SMN (see Fig. 2a). As
shown in Fig. 2b, this spreading is manifested as higher entropy
in ASD (e.g., the same cortical location is assigned to different

ICNs across individuals). Increases in ASD were highest in the
SMN (Cohen’s d= 0.290), followed by VAN (d= 0.209), DAN
(d= 0.203), and DMN (d= 0.188). On the other hand, the limbic
system (LSN, d=−0.282) showed lower entropy in ASD (see
Fig. 2c). We could observe high correlations of group-wise
entropy differences with the corresponding differences in SD
(r= 0.512, pspin < 0.001) and DD (r= 0.459, pspin < 0.001) (see
Fig. 2d), even after accounting for spatial autocorrelation using
nonparametric spin tests51. In accordance with the SD and DD
findings, we observed lower entropy in ASD relative to TD in the
lateral temporal lobe. Moreover, we also analyzed the potential
link between idiosyncrasy and the hierarchical organization of the
cortex. Specifically, we assessed the emergence of idiosyncrasy
along the principal connectivity gradient46. As shown in
Supplementary Fig. 3, idiosyncrasy increased following the
principal gradient, from lowest in sensory/motor regions to
highest in transmodal cortices.

Although the study site was included as a covariate in our main
analyses, we repeated the SD and DD analyses for each site
separately. Supplementary Figs. 4 and 5, respectively display
global and site-specific SD and DD differences between TD and
ASD. Despite variability in findings across sites, the overall

Fig. 2 Spatial probability maps and entropy distributions of intrinsic connectivity networks. a Lateral and medial views of the left hemisphere displaying
group-level spatial probability maps for each intrinsic connectivity network in TD (left) and ASD (right). b Group-wise entropy computed from the average
probability maps for TD (top) and ASD (bottom). c Entropy distributions for each functional network (based on the reference clustering). d Spatial
correlation of group-wise entropy differences (i.e., ΔEntropy) with the corresponding group-wise differences in surface (ΔSD) and diffusion (ΔDD)
distances. Positive values reflect higher entropy/distance in ASD. Shaded areas around the regression lines denote a 95% confidence interval. DAN dorsal
attention network, DMN default mode network, FPN frontoparietal network, LSN limbic system network, SMN somatomotor network, VAN ventral
attention network, VN visual network.
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direction of findings was relatively consistent across most of the
included sites, particularly those with the highest numbers of
subjects i.e., NYU, USM, and PITT (see Supplementary Table 2).

Idiosyncrasy association to age and symptom severity. When
analyzing age effects (see Fig. 3 and Supplementary Fig. 6), we
found significant associations to idiosyncrasy in the DAN
(p < 0.001/0.001 for SD/DD), LSN (p= 0.089/0.001), SMN
(p < 0.001 for both SD and DD), VAN (p= 0.016/0.001), and VN
(p < 0.001). On the other hand, we found no significant rela-
tionship between DMN (p= 0.551/0.423) and FPN (p= 0.143/
0.087). Overall, there was a significant effect of age on shifting in
cortical and embedding spaces (p < 0.001), manifested in

increasing SD and DD. These results indicate that idiosyncrasy
increases with age. Nevertheless, ASD and TD showed similar
slopes and there were no significant group-level interactions. We
further assessed these results repeating our surface-based analysis
using only the children (i.e., age <18 years) in our dataset and
only the adults (i.e., age ≥18). Overall, results from these analyses,
reported in Supplementary Fig. 7, were consistent with the
findings obtained when using all individuals in our dataset.
Nonetheless, when only using adults, the cluster in the temporal
lobe showing higher idiosyncrasy in TD was relatively larger with
respect to the cluster found in children.

We also investigated the association of our idiosyncrasy
descriptors with ASD symptom severity based on the Autism
Diagnostic Observation Schedule (ADOS). Specifically, we tested

Fig. 3 Idiosyncrasy association with age and symptom severity. a T-maps of age effects on surface and diffusion distances (left), and relationships of
surface (top) and diffusion (bottom) distances with age for DAN and SMN, and globally for the entire cortex (right). b Pearson’s correlation of average
surface (top) and diffusion (bottom) distances with calibrated severity scores (CSS) in networks with the highest idiosyncrasy (i.e., DAN, DMN, SMN, and
VAN). Statistical significance is indicated with *, **, and ***, respectively denoting p < 0.05, p < 0.01, and p < 0.001 after FDR correction across seven
networks for age and, for CSS, across the four different networks. Shaded areas around the regression lines denote a 95% confidence interval. DAN dorsal
attention network, DMN default mode network, SMN somatomotor network, VAN ventral attention network.
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whether ADOS calibrated severity scores (CSS) were associated
with SD and DDs (see Fig. 3b). The descriptors were computed
for the networks that showed the highest idiosyncrasy and for the
entire cortex. After correcting for multiple comparisons, sig-
nificant associations were found in the default mode and
attention networks, whereas SMN showed no significant associa-
tion with CSS. Across the whole cortex, we found a significant
association of CSS with DD (r= 0.208, p= 0.016) but not with
SD (r= 0.113, p= 0.198). From these results, we can see that
increasing idiosyncrasy is related to symptom severity.

Associations to cortical morphology and gene expression pat-
terns. Several studies3,37,43,52–55 have reported morphological
alterations in ASD relative to TD. Cortical thickness changes were
overall consistent with morphological anomalies reported in the
literature, showing a mix of frontal and midline parietal cortical
thickening sometimes together with patches of cortical thinning in
temporal regions37,43,52–54,56. Importantly, we also inspected the
relationship of the functional idiosyncrasy descriptors with changes
in cortical morphology, by running spatial correlation analyses
between group-wise differences in cortical thickness and mean
curvature index to those in SD and DD. To account for spatial
autocorrelations, we used spin tests with 1000 permutations51. As
shown in Fig. 4a, we found no significant associations between
cortical thickness and either measure of idiosyncrasy. Similar results
were found when using a mean curvature index as a descriptor of
cortical morphology, as shown in Supplementary Fig. 8. These
results suggest that differences in functional idiosyncrasy are not
spatially overlapping with potential alterations in cortical mor-
phology in the ASD sample studied here.

Furthermore, we explored potential neurobiological correlates of
idiosyncrasy in ASD. Idiosyncrasy maps obtained using SD and SD
were correlated with postmortem gene expression maps from six
donors provided by the Allen Institute for Brain Sciences (AIBS)57.
Significant genes were identified by spatially correlating their
expression patterns with our maps of idiosyncrasy based on spin
tests with 1000 permutations, across the six postmortem cortical
brain samples. Only genes that were significantly associated with
idiosyncrasy and consistently expressed across all six donors
(average inter-donor correlation ≥0.5) were considered for further
analysis58. Selected genes (see Supplementary Table 4) were tested
for developmental expression analysis across different develop-
mental time windows59, from early fetal to young adulthood, and
disease enrichment analysis. Developmental gene expression
analysis highlighted associations of our idiosyncrasy descriptors
with genes expressed in the brain from early infancy onwards (see
Fig. 4b), and across several brain regions comprising the cerebellum,
cortex, and striatum. Significant gene expressions were predomi-
nantly found in adolescence and young adulthood. Furthermore, we
performed disease enrichment analysis to investigate the relation-
ship between the strength of the association derived for each gene
expression (with respect to our idiosyncrasy map) and a set of
differential gene expression signatures in ASD, schizophrenia, and
bipolar disorder. As shown in Fig. 4c and Supplementary Fig. 9, this
analysis revealed that cortical patterns of idiosyncrasy were more
strongly associated with differential gene expression60 in ASD
(t= 42.270/28.099, p < 0.001 for SD/DD) than in schizophrenia
(t= 18.548/14.192, p < 0.001) or bipolar disorder (t= 0.577/−2.014,
p= 0.564/0.044).

Connectivity alterations reflect idiosyncrasy. Prior research has
suggested connectivity alterations in ASD relative to controls, but
patterns of findings have overall not been consistent28,29. Here,
we examined the spatial relationship between idiosyncrasy (in
terms of SD and DD) and overall connectivity alterations,

quantified using degree centrality (DC; see below for findings
using eigenvector centrality). DC provides an unbiased depiction
of the functional connectome that assigns each cortical location
the number of connections exceeding a predefined threshold, set
here to 0.222.

The relationships of degree centrality with surface and
diffusion distances are shown in Fig. 5a and reported in Table 1
for each ICN. DC showed strong correlations with both SD
(r= 0.468, p < 0.001) and DD (r= 0.413, p < 0.001). For DC,
positive/negative values indicate hyper/hypo-connectivity in ASD
and higher/lower spatial deviations in surface and diffusion
distances relative to TD. These results show that connectivity
alterations in ASD are significantly associated with idiosyncrasy.
Regions that exhibit hyper-connectivity (i.e., higher DC) in ASD
show increased spatial deviation from the locations of the
canonical networks. At the network level, SD was associated with
DC in FPN, DMN, and VAN, whereas DD was associated with
DC in all networks except the limbic system. Given the
relationship of idiosyncrasy with DC, we set out to investigate
the role of idiosyncrasy in the connectivity alterations observed in
previous work. We first analyzed the differences in DC between
ASD and TD and then repeated the same analysis controlling for
idiosyncrasy. That is, we used both SD and DD as additional
covariates in our analysis. As shown in Fig. 5b, the number of
clusters showing significant differences is considerably reduced,
with only one small region in the left frontal lobe remaining.
Findings were replicated using a different centrality measure (i.e.,
eigenvector centrality61), as shown in Supplementary Fig. 10 and
Supplementary Table 5. Eigenvector centrality assigns each node
its corresponding entry in the eigenvector with the largest
eigenvalue of the connectivity matrix. With eigenvector centrality,
none of the regions showing significant differences in connectiv-
ity survived after controlling for idiosyncrasy. Altogether, these
findings suggest that identifiable connectivity alterations in
conventional ASD to control comparisons do, at least in part,
emanate as a result of the high variability in the spatial locations
of the ICNs.

Discussion
Neurodevelopment is a complex yet coordinated process shaping
the anatomy and function of multiple brain networks, with
important variability across individuals. Characterizing this
variability may add precision in the study of typical development
and may advance our understanding of atypical neurodevelop-
ment in diverse indications such as ASD62,63. Multiple studies
have previously reported atypical functional connectivity in ASD,
contributing to the overall notion of ASD as a disorder of brain
networks11,12,22. However, there have also been reports ques-
tioning the consistency of findings, both in terms of which net-
works are involved and in terms of the directionality of
findings23,25,64. Beyond an increasing recognition on the impact
of preprocessing choices and sample inclusion criteria4,6,25, a
growing research line is hinting at a more variable and idiosyn-
cratic organization of the functional connectome in ASD as a
potential contributor to these inconsistent findings28–30. In
essence, idiosyncrasy describes an increased spatial variability in
the mapping between functional network organization and brain
anatomy. Here, we set out to (i) characterize such idiosyncratic
network organization in ASD, using novel metrics that capture
network variation in both physical and topological spaces, (ii)
examine associations to age and symptom severity, (iii) explore
morphological and genetic associations, and (iv) investigate how
idiosyncrasy may contribute to functional connectivity alterations
commonly seen in ASD to control case-comparison studies. In
short, our findings suggest that ASD presents with a mosaic of
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Fig. 4 Associations to cortical morphology and gene expression patterns. a Correlation of group-wise differences in surface (top) and diffusion (bottom)
distances with cortical thickness, and comparison of empirical correlation with the null distribution obtained using 1000 spin permutation tests to account
for spatial autocorrelation. b Developmental cortical enrichment, showing enrichment mainly in the cerebellum, cortex, and striatum (left), specifically in
adolescence and young adulthood (right). In the left panel, the size of hexagon rings represents the proportion of genes specifically expressed in a
particular tissue at a particular developmental stage. Varying stringencies for enrichment with respect to specificity index threshold (pSI) are represented
by the size of hexagons going from least (outer hexagon) to most specific (center hexagon) (pSI= 0.05, 0.01, 0.001, and 0.0001, respectively)59. Colors
represent FDR-corrected p values. The right panel reports the log-transformed FDR-corrected p values, averaged across all brain structures. c Associations
of gene expression in neuropsychiatric disorders, where log2(FC) stands for log2 fold-change of the genes in each disorder and the vertical axis indicates
the significance of the relationship strength of the genes with idiosyncrasy in terms of surface distance (SD). Amy amygdala; Cbl cerebellum; Ctx cortex,
Hip hippocampus, Str striatum, Thal thalamus.
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idiosyncrasy alterations relative to TD, with mainly increases in
ASD, together with focal decreases in network idiosyncrasy in
lateral temporal regions. Idiosyncrasy was found to relate to both
age and symptom load as measured with ADOS CSS65–67, and the
spatial topography of ASD-related network idiosyncrasy strongly
correlated with the expression of autism risk genes. Notably, we
could also show that idiosyncrasy contributes to ASD versus TD
connectivity differences that are detectable with typical case-
control analysis, motivating future research strategies that con-
sider patterns of idiosyncrasy in their analyses.

Core to our work were two complementary approaches to
quantify functional idiosyncrasy, with one approach operating in
the spatial domain and another one in connectivity-determined
manifold spaces. Both approaches converged in showing that
while functional network organization is idiosyncratic in both TD
and ASD, the latter showed a mosaic of mainly increases in
network idiosyncrasy across multiple functional systems together
with patches of idiosyncrasy reductions. In the spatial domain, we
compared individual network locations to a canonical reference
connectome, built by averaging all individual connectivity
matrices in our dataset. This highlighted that several networks
(i.e., DAN, DMN, SMN, and VAN) were shifted in ASD from the
typical locations of their corresponding reference networks.

Complementing idiosyncrasy profiling in the spatial domain, we
characterized idiosyncrasy in a connectivity-informed manifold
space. Such manifolds provide coordinate systems based on
intrinsic network organization and are, thus, decoupled from the
underlying anatomy46,68,69. In several recent studies, our group
and others capitalized on manifold spaces to represent structural
and functional connectome information70–72, to assess structure-
function coupling72, and to study typical and atypical con-
nectome organization11,42,71,73,74. Unlike their spatial counter-
parts, manifold-based idiosyncrasy measures tap into intersubject
correlations75, and in turn, provide a metric sensitive to regional
connectivity, as well as similarity in connectivity to other
regions76. This descriptor converged with our SD analysis, in that
it pointed to a spatially varying pattern of idiosyncrasy, with ASD
showing mainly increased idiosyncrasy across multiple networks,
encompassing sensory as well as higher-order networks. In
addition to the convergence in findings across these two
descriptors, we could cross-validate our findings using an
entropy-based descriptor at the network level. This approach
provided an independent probabilistic context to understand our
findings in terms of interindividual spatial network uncertainty
(i.e., networks with high interindividual variability show high
entropy), supporting increased idiosyncrasy in ASD in multiple
networks relative to TD. Note that these descriptors were used to
study idiosyncrasy at the cortical level. Besides cortical regions,
however, subcortical areas and subcortico–cortical interactions
play an important role in ASD20,42. The incorporation of sub-
cortical regions may have important implications for our idio-
syncrasy descriptors, and it may further enrich the description of
network hypo/hyper-connectivity observed in group-level con-
trast analysis. With the exception of distance-based measures (i.e.,
SD and MSD), our descriptors could be easily extended to
incorporate and account for differences in subcortical con-
nectivity patterns.

The functional networks found to be idiosyncratic in our analyses
have been consistently shown to diverge in analyses that compared
functional connectivity in ASD relative to TD at the group level.
Indeed, several studies have reported connectivity alterations in
ASD individuals relative to TD in the DAN77–79, VAN78,80,

Fig. 5 Association of degree centrality with idiosyncrasy. a Statistical t-maps (top) of areas showing differences in degree centrality between ASD and
TD before (i.e., DC) and after controlling for idiosyncrasy (i.e., ~DC), and Pearson’s correlation (bottom) of DC t-map with t-maps of surface (SD) and
diffusion (DD) distances. b Regions showing significant DC increases (red) and decreases (blue) in ASD before (top) and after (bottom) controlling for
idiosyncrasy. Idiosyncrasy is represented with SD and DD as additional covariates. Shaded areas around the regression lines denote a 95% confidence
interval.

Table 1 Relationship of idiosyncrasy, in terms of network-
wise surface (SD) and diffusion (DD) distances, with
average degree centrality for each intrinsic connectivity
network.

SD DD

DAN t= 1.57 t= 3.99*

DMN t= 2.43* t= 6.09*

FPN t= 5.38* t= 6.24*

LSN t=−0.61 t=−1.10
SMN t=−0.30 t= 4.35*

VAN t= 3.94* t= 5.15*

VN t=−0.18 t= 3.13*

Significant associations after FDR correction are denoted with *.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02572-6

8 COMMUNICATIONS BIOLOGY |          (2021) 4:1078 | https://doi.org/10.1038/s42003-021-02572-6 | www.nature.com/commsbio

www.nature.com/commsbio


DMN5,77,81,82, and the SMN12,20,22,82. Our findings show that the
degree of spatial shifting, irrespective of the cohort (i.e., in both
ASD and TD), is distributed across the putative functional hier-
archy, affecting primary sensory, unimodal association, and atten-
tional, as well as higher-order transmodal systems such as the
DMN. Interestingly, and previously unreported in ASD, our two
idiosyncrasy measures also pointed to reduced idiosyncrasy in a
region encompassing the lateral temporal lobe in ASD. A prior rs-
fMRI study in neurotypical individuals83 found the lateral temporal
cortex to be among the areas with the highest intersubject variability
in intrinsic functional connectivity. Moreover, lateral temporal
cortical areas have previously been suggested to show abnormal
structural connectivity in ASD in very young children at risk for
ASD84. In that study, lower structural network efficiency of primary
and secondary auditory cortices was related to autism risk in chil-
dren as young as 6 months old, and network inefficiencies were
related to symptom load at a later follow-up84. The authors sug-
gested that atypical organization in sensory systems in autism may
manifest early, and potentially cascade into the organization of
higher order networks—a finding in line with the sensory first
hypothesis of autism and other neurodevelopmental disorders85–87.
Although our findings are overall indicative of a relatively broad
functional perturbation affecting many networks, using the princi-
pal connectivity gradient as a model of human cortical hierarchical
organization, we were able to demonstrate an overall higher
increase in idiosyncrasy in transmodal networks compared to
sensory/motor networks, showing that increased idiosyncrasy in
ASD is preferentially located in cortical regions with the most
variability among neurotypical individuals, with the exception of the
lateral temporal areas83. An increasing body of neuroimaging work
has shown that primate and human cortical microstructure and
function generally follows sensory-transmodal hierarchies46,71,88,89,
recapitulating earlier models of primate cortical organization90,91.
Further evidence on a hierarchical organization is supplied by
electrographic and neuroimaging studies, showing similar gradients
of temporal hierarchies in the primate cortex that follow sensory-
transmodal hierarchies88,92. Local alterations at specific nodes along
these hierarchies could ultimately affect integrative and hetero-
modal networks, such as the DMN, disproportionately and manifest
as increased idiosyncrasy in these networks.

Findings of increased idiosyncratic organization in ASD are
consistent with prior work reporting higher inconsistency in the
incorporation of individual anatomical locations to the DMN and
SMN30, and increased spatial shifting in DAN and VAN28. In our
study, these four ICNs had a more idiosyncratic functional
organization in ASD. Moreover, and similar to prior work, we
found that idiosyncrasy increased with symptomatology, more
specifically in social and communication difficulties, indicating
that functional network reorganizations which diverge most from
the normative group are reflected in more pronounced patterns of
behavioral divergence on standardized testing. Nonetheless, these
prior studies have largely overlooked the relationship of the
underlying spatial topography to connectivity differences in ASD
versus control populations. In29, it was shown that the existence
of topographical distortions among individuals leads to a
regression to the mean effect at the group level. In other words,
the study of functional connectivity at the group level may be
affected by latent misalignments between the functional organi-
zation and the underlying anatomy, potentially giving rise to
spurious differences. Indeed, our analysis of functional con-
nectivity alterations showed that idiosyncrasy is a potential con-
founder. Hyper- and hypo-connected regions found in ASD using
degree and eigenvector centrality measures show great overlap
with previous findings in multiple large-scale datasets using

degree centrality22. However, after controlling for idiosyncrasy
(using both surface and diffusion distances as covariates), dif-
ferences were considerably reduced. A small patch with increased
connectivity survived when using degree centrality, whereas with
eigenvector centrality no connectivity differences were found. It is
plausible that idiosyncratic reorganization in ASD breaks down
the functional correspondence between homologous anatomical
regions across individuals assumed in case-control studies, and
thus challenges inference as well as the interpretation of pre-
viously reported connectivity differences. Intersubject variability
in functional connectivity has been shown to be related to the
variability in the position of functional regions even in normative
populations93. This is closely related to an emerging literature on
precision neuroimaging in healthy populations, where several
studies have also shown specific within-subject features of net-
work organization that do not manifest at the group level due to
this effect33,34,94,95. In addition to potential spatial uncertainty,
other findings have also shown that some of the connectivity
alterations found in ASD are partially driven by short-term
temporal variability96. Taken together, our findings suggest a
marked influence of network idiosyncrasy on what is detectable
with traditional case-control connectivity analyses. As such, they
support the development of novel approaches to analyze con-
nectivity differences at the group level, while also considering
subject-specific variability, especially in atypical populations such
as ASD.

Cortex-wide correlation analyses revealed no significant asso-
ciations between differences in cortical morphology (quantified
via cortical thickness and mean curvature index) and our maps of
idiosyncrasy, ruling out a systematic relationship between
alterations in both brain structure and function. We note, how-
ever, that in our sample, the lateral temporal lobe showed subtle
degrees of cortical thinning in ASD compared to TD, which is in
line with prior studies55 and spatially coincides with our findings
of reduced idiosyncrasy in the lateral temporal areas in ASD.
Albeit speculative, it is possible that cortical thinning in ASD in
these regions may ultimately have downstream effects on func-
tional connectivity (e.g., if the thinning relates to synaptic
alterations and or subtle disconnection in the temporal lobe), and
may thus relate to region-specific alterations in functional idio-
syncrasy. The relationship of idiosyncrasy with morphology may
be further investigated in future work using other MRI-derived
measures, notably those sensitive to myeloarchitecture and tissue
microstructure, which can be used in the study of structure-
function association based on depth specific variations in cortical
microstructure and to track developmental change71,97. On the
other hand, correlating idiosyncrasy measures with age indicated
an age-related increase in both ASD and TD, with no significant
differences in trajectories between groups. As such, our results
point to an increased functional network idiosyncrasy in ASD
relative to controls already present at an early age, with neither a
considerable aggravation nor normalization throughout child-
hood development, adolescence, and early adulthood. Notably,
while our inclusion criteria allowed the study of both children
and adults with ASD and TD, our youngest participants were 5
years old. In light of emerging studies suggesting connectivity
anomalies in very young children with autism84, it will therefore
be of relevance to assess network idiosyncrasy in small kids and
infants and to also model intraindividual trajectories long-
itudinally. This will offer a more precise understanding of early
mechanisms contributing to idiosyncrasy, alongside a more direct
mapping of intraindividual trajectories in idiosyncratic networks.

Although our findings showing a mosaic pattern of increased and
decreased idiosyncrasy warrant further investigation, a plausible
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explanation for this large-scale functional reorganization in ASD
together with increased variability in both spatial and connectome-
based network embeddings may relate to compensatory plasticity
mechanisms and its imbalance in autism. By integrating genetic,
cognitive, and neuroimaging findings, the so-called trigger thresh-
old target model of autism98 has postulated that ASD may relate to
neurodevelopmental disturbances that trigger compensatory real-
locations of neural resources in autism. As a result, intact regions
assume functions from nearby impaired areas. To accommodate
this shifting of competences, spatially adjacent networks might be
required to adjust their locations and/or typical functional crosstalk,
a phenomenon that may contribute to the observed increases in SD
and DD in the cohort with autism. Since reallocations are likely to
occur within the same hemisphere (e.g., involving spatially adjacent
networks), this shifting may give rise to increased distortions in
homotopic interhemispheric connectivity because it breaks the
functional interhemispheric correspondence, which is in line with
previous findings29. Supporting this shifting of competences, prior
work has suggested abnormal cortical plasticity in ASD99, with
multiple genetic factors involved in this process. In fact, most
genetic risk factors associated with ASD appear to be implicated in
synaptic plasticity and connectivity more generally100,101. Genetic
influences on functional connectivity are well established in both
adults, and TD children and adolescents102–104. Prior imaging-
genetics studies have consistently demonstrated considerable her-
itability of resting-state functional networks103,105–107. Moreover,
these risk factors may be shared across a range of neuropsychiatric
disorders108. The vast genetic diversity associated with ASD in
conjunction with its high heritability100,109 may therefore account
for heterogeneity in connectivity alterations observed in ASD110. In
this work, we investigated the relationship of idiosyncrasy with gene
expression, showing that genes associated with idiosyncrasy differ-
ences were more strongly correlated with differential gene expres-
sion in ASD than in schizophrenia and bipolar disorder, which
further highlights idiosyncrasy as an important feature of autism.
Note, however, that gene expression used in this analysis is derived
from adult postmortem data from a different dataset (i.e., Allen
Human Brain Atlas [AHBA]), and our findings may thus only
represent indirect associations that need to be confirmed as addi-
tional resources and datasets become available that offer both
neuroimaging and gene expression data in the same ASD and
control populations. Besides genetic factors, the environment also
plays an important role in shaping functional network organization
throughout development103,111. Equally, environmental factors
have been suggested to be a risk of neurodevelopmental disorders
such as ASD112–114, and environmental factors may also contribute
to the observed functional network idiosyncrasy in ASD. Of note,
idiosyncratic network organization could be identified in the
absence of any goal-oriented task in the current study, purely based
on a task-free functional imaging acquisition. Although changes in
these patterns might occur under different task conditions or
mental states, this idiosyncrasy can be seen as an inherent char-
acteristic of ASD brain organization that may contribute to
unconstrained cognitive processes, during routine behavior, as well
as specific tasks29. Moreover, the emergence of idiosyncrasy may be
related to the way ASD individuals interact with external environ-
ments. Altered interactions with the environment may account for
individual differences. For example, given cognitive inflexibility that
has been reported in ASD115, idiosyncratic functional reorganiza-
tions may stem from compensatory mechanisms developed to
overcome cognitive and behavioral rigidity116.

To conclude, our work characterized functional idiosyncrasy in
spatial and connectivity-informed manifold dimensions of the
functional connectome. Studying a large dataset of TD and ASD,
our novel descriptors reliably captured differences in both groups,
suggesting a mosaic pattern of idiosyncrasy increases and

decreases in several functional networks in ASD. In addition to
showing associations to age, symptom severity, as well as gene
expression patterns, our findings notably indicated a marked
relationship between idiosyncrasy and connectivity differences
that can be identified using case-control analysis, which may
consolidate some of the heterogeneity observed in previous stu-
dies in ASD and calls for the consideration of idiosyncrasy when
studying the functional connectome in autism, since connectivity
alterations may, at least partly, reflect an underlying idiosyncratic
organization.

Methods
Participants and data acquisition. We studied rs-fMRI data from both waves of
the openly-shared Autism Brain Imaging Data Exchange initiative (ABIDE I and II;
http://fcon_1000.projects.nitrc.org/indi/abide)12,13. For our study, we selected
those sites with ≥10 individuals per group and with both children and adults. After
detailed quality control, only cases with acceptable T1-weighted (T1w) MRI, sur-
face-extraction, and head motion in rs-fMRI were included in our analyses,
resulting in a total of 329 subjects (157/172 ASD/TD, with mean ± SD age in
years= 18.4 ± 8.2/18.4 ± 7.7) from five different sites: (1) NYU Langone Medical
Center (NYU, 35/51 ASD/TD from ABIDE-I, and 21/19 from ABIDE-II); (2)
University of Utah, School of Medicine (USM, 49/37 ASD/TD); (3) University of
Pittsburgh, School of Medicine (PITT, 19/20 ASD/TD); (4) Trinity Centre for
Health Sciences, Trinity College Dublin (TCD, 12/16 ASD/TD); and (5) Institut
Pasteur/Robert Debré Hospital (IP, 11/21 ASD/TD). High-resolution T1w images
and rs-fMRI were acquired on 3 T scanners from Siemens (NYU, USM, PITT) or
Philips (IP, TCD). More information about acquisition settings for each site is
provided in Supplementary Table 1.

Individuals with ASD were diagnosed by an in-person interview with clinical
experts and gold standard diagnostics of the ADOS117 and/or Autism Diagnostic
Interview-Revised (ADI-R)118. TD individuals did not have any history of mental
disorders. For all groups, participants who had genetic disorders associated with
autism (i.e., Fragile X), contraindications to MRI scanning, and pregnancy were
excluded. The ABIDE data collections were performed in accordance with local
Institutional Review Board guidelines, and data were fully anonymized. Written
informed consent was obtained from all the participants. Detailed demographic
information from participants included in our study are reported in Supplementary
Table 2.

Data preprocessing. T1w MRI data were preprocessed with FreeSurfer
v5.144,119,120. The pipeline performed automated bias field correction, registration
to stereotaxic space, intensity normalization, skull-stripping, and tissue segmen-
tation. White and pial surfaces were reconstructed using triangular surface tes-
sellation and topology-corrected. Surfaces were inflated and spherically registered
to fsaverage. For the rs-fMRI, we used preprocessed data previously made available
by the Preprocessed Connectomes initiative (http://preprocessed-connectomes-
project.org/abide). The preprocessing was performed with C-PAC (https://fcp-
indi.github.io) and included slice-time correction, head motion correction, skull
stripping, and intensity normalization. The rs-fMRI data were de-trended and
nuisance effects related to head motion, white matter, and cerebrospinal fluid
signals were removed using CompCor121, followed by band-pass filtering
(0.01–0.1 Hz). Finally, rs-fMRI and T1w data were coregistered in MNI152 space
using linear and nonlinear transformations. Individual rs-fMRI data were mapped
to the corresponding mid-thickness surfaces, resampled to the Conte69 template
(https://github.com/Washington-University/Pipelines), and smoothed using a
5 mm full width at half maximum (FWHM) kernel. All segmentations and surfaces
were visually inspected. Subjects with erroneous segmentations or framewise dis-
placements greater than 0.3 mm were excluded from our analyses.

Identification of intrinsic connectivity networks. To identify and quantify
idiosyncrasy in functional network organization, we mapped the rs-fMRI data to a
low-dimensional space using the following steps (see Fig. 1a). First, we built the
connectivity matrices from the rs-fMRI time-series of each individual in our
dataset using linear correlation coefficients. The connectivity matrices were based
on a functional parcellation with 1000 labels50, Fisher’s z-transformed and thre-
sholded to only keep the 10% of the most similar entries per row122. We used
diffusion mapping introduced in ref. 45, as implemented in BrainSpace122, to
embed the rs-fMRI data into a low-dimensional manifold. This approach is robust
to noise and computationally efficient compared to other nonlinear manifold
learning techniques123,124. Briefly, diffusion mapping embeds the data into a
particular Euclidean space in which the usual Euclidean distance corresponds to
the diffusion distance on the data at a given scale or diffusion time. In this new
space, interconnected cortical regions are nonlinearly projected to fall close to each
other, whereas weakly connected regions are mapped to distant locations in the
eigenspace. For our study, the diffusion time was set to 1, and the α parameter,
which controls the influence of the density of sampling points on the manifold
(from maximal influence α= 0, to no influence at all α= 1) was set to α= 0.5 to
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retain the global relations between data points in the embedded space, following
prior work11,46,125. Since diffusion maps capture the main structures of the data
along a few cardinal dimensions, we selected the first 30 eigenvectors similar to a
previous study, corresponding to the largest eigenvalues to represent each indivi-
dual embedding126.

To assess differences between TD and ASD, we averaged the connectivity
matrices of all the individuals in our dataset to build a mean connectivity matrix,
which was subsequently used to construct a reference embedding. This reference
embedding was used as a representation of the canonical functional connectivity
template. Because diffusion mapping may take the individual datasets into different
Euclidean spaces, the standard Euclidean distance between the elements of these
spaces is not meaningful. To bring the data into the same Euclidean space, we used
a change of basis operator to map all the individual embeddings to the reference
embedding127. In this way, we can compute the Euclidean distance within and
between datasets, allowing us, therefore, to compare the individual diffusion maps
to the reference embedding.

Finally, to identify the ICNs, all embeddings (including the reference) were
clustered into seven components using a Gaussian mixture model with a full
covariance matrix. Each point in the embedding was assigned to the cluster
corresponding to the highest a posteriori probability. The mixture model was
initialized with the seven ICNs proposed in128.

Idiosyncrasy descriptors. Two different approaches were proposed to char-
acterize idiosyncrasy, namely: spatial- and manifold-based distance measures. For
the spatial measure, we used SD, which was computed for each point as the
geodesic distance to the closest point in the corresponding reference network3,46.
The second measure to characterize idiosyncrasy is based on diffusion distance,
which is approximated using the Euclidean distance in the eigenspace between
points of each individual to the reference embedding, such that points that fall far
apart from their corresponding reference points show a high difference in their
original rs-fMRI time-series. Instead of computing the distance between pairs of
points, however, we take advantage of the clustering and compute the diffusion
distance from a given point to its closest point in the reference embedding that
belongs to the same cluster (i.e., ICN). Let Ψr

c be the set of points of the reference
embedding in cluster c, for each point ϕc 2 Φi

c of the individual embedding i in the
same cluster, our diffusion-based idiosyncrasy descriptor is then computed as
follows:

ddðϕc;ψr
cÞ ¼ kϕc � ψck2: ð1Þ

In this way, this descriptor captures the variability that exists in the connectivity
patterns that characterize a specific ICN among all the individuals in our dataset.
Furthermore, to assess that idiosyncrasy differences are not related to the size of the
ICNs, which would rather indicate alterations in connectivity, we aimed to quantify
the spatial variability at the network level by computing the overlap and the extent
of shifting of each individual clustering from the canonical reference for each ICN.
To do so, we used the Dice similarity coefficient129, which is in common use in
neuroimaging research:130

Dice ðA;BÞ ¼ 2jA \ Bj
jAj þ jBj ; ð2Þ

Jaccard index:

Jaccard ðA;BÞ ¼ jA\Bj
jA∪ Bj ; ð3Þ

and MSD:

MSD ðA;BÞ ¼ 1
jAj þ jBj ∑

a2A
dða;BÞ ∑

b2B
dðb;AÞ

� �
; ð4Þ

where A and B are respectively the reference and individual clusters corresponding
to a specific network, |·| denotes cardinality, and d(a,B) is the geodesic distance
between point a in cluster A to the closest point in cluster B. In this case, the
idiosyncrasy of the individual functional connectomes is indicated by low Dice
overlaps and high MSD from the reference clustering.

The spatial variability existing in the network locations among individuals is
reflected in the spreading of the ICN probability maps at the group level. The
higher the spreading, the more idiosyncratic are the individuals in a given cohort.
Therefore, we further characterized idiosyncrasy using a measure of uncertainty
based on the entropy of the group-wise probability maps obtained from clustering.
In other words, this descriptor measures how evenly the probability mass is spread
among the different ICNs at each location. Entropy is minimized when most of the
probability mass is concentrated on a particular network, indicating a location with
very low variability among individuals (i.e., the location is assigned to the same
ICN in most individuals). On the other hand, entropy is increased when the
probability mass at a given location is spread among several ICNs (i.e., the location
is assigned to different ICNs across individuals).

Analysis of idiosyncrasy. Idiosyncrasy was quantified using surface and diffusion
distance measures, which we used to perform the following analyses:

● Assessing idiosyncrasy differences between ASD and TD. For the spatial
descriptors of idiosyncrasy (i.e., Dice/Jaccard overlap and MSD), general
linear models (GLM) predicting each of the idiosyncrasy measures based
on group diagnosis were used to assess differences at the network level and
cortex-wise. For the latter, overall Dice/Jaccard and MSD were computed
as the weighted average of the corresponding scores for each ICN, using the
size of the reference networks as weights. All results from our network-level
analyses were corrected for multiple comparisons using
Benjamini–Hochberg FDR correction131. GLMs were also used in the
surface-based analysis to study the differences in DD and SDs. For entropy,
network-wise differences were analyzed at the group level using two-
sample t-tests.

● Age effects. To investigate age-specific differences in idiosyncrasy, the
surface-based analysis to study differences in DD and SDs was further
repeated for children (86 TD and 88 ASD individuals with age <18), and
adults (86 TD and 69 ASD individuals with age ≥18) separately.

● Association of idiosyncrasy with ASD symptomatology. Idiosyncrasy
descriptors were correlated with ADOS CSS rather than raw ADOS scores
since participants with different ages and language abilities undergo
assessments using different ADOS modules. For the ABIDE sample used in
our work, however, CSS (or the necessary information to derive them) were
only available for a small subset of individuals. We therefore resorted to an
approximation by using a proxy CSS approach based on social and
communication ADOS scores67, which are available for all subjects. The
proxy CSS were derived by mapping a subject’s age, total ADOS score
(social and communication), and ADOS module through a lookup table.
Since ABIDE includes modules 2–4, we used the lookup table provided
by65 for modules 2–3, and the table provided by66 for module 4. Results
were corrected for multiple comparisons using the FDR procedure. For the
correlations of idiosyncrasy with CSS, we z-scored the data with respect to
TD and regressed out the effects of age, sex, and site prior to performing
the correlations.

● Associations to morphology. To assess whether there is an association
between these morphological alterations in ASD and functional idiosyn-
crasy, we correlated group-wise differences in cortical thickness and mean
curvature index with surface-based idiosyncrasy measures (i.e., using
surface and diffusion distances). We accounted for spatial autocorrelations
using nonparametric permutation tests (i.e., spin tests)51.

Gene enrichment analysis. Many risk factors have been associated with neuro-
developmental disorders, with genetic factors playing an important role in the
etiology of ASD132,133. We, therefore, aimed to investigate the genetic correlates of
idiosyncrasy in ASD. Using a similar approach to Neurovault gene decoding
tool57,134, coherent associations between our idiosyncrasy maps (i.e., t-maps of
surface and diffusion distances) and postmortem gene expression patterns from the
AIBS were measured to identify the set of genes with significant spatial overlaps.
Significant genes were obtained by regressing each gene against our cortical map of
idiosyncrasy (e.g., DD) for each donor and using a one-sample t-test to determine
whether the slopes across all six donors were different from 0. To correct for
multiple comparisons, the procedure was repeated by randomly rotating our maps
of idiosyncrasy using 1000 spin permutations51, which were compared with the
original t-statistic to assess gene significance.

Gene expressions for all six donors in the AHBA dataset were obtained using
abagen (https://github.com/rmarkello/abagen). Only genes that were consistently
expressed across donors (i.e., average inter-donor correlation ≥0.5) were
considered for our analyses58. Next, we carried out developmental gene expression
analysis and disease enrichment analysis. In the former, we identified the genes
whose expressions significantly overlapped with our idiosyncrasy maps. The
identifiers of this final set of significant genes were then submitted to the cell-type-
specific expression analysis (CSEA) developmental expression tool (http://
genetics.wustl.edu/jdlab/csea-tool-2/), where they were compared against
developmental expression profiles from the BrainSpan dataset (http://
www.brainspan.org) to identify the developmental time windows across brain
regions in which these genes are expressed. In the second analysis (i.e., disease
enrichment), we used a recently published catalog of genes with differential
expression information (i.e., fold change values) for autism, schizophrenia, and
bipolar disorder135. Here, we used robust linear regression to assess the relationship
between the t-statistics derived from the previous spatial analysis (i.e., denoting the
association of gene expression with our idiosyncrasy map) and their corresponding
log fold-changes in each neuropsychiatric disorder136. Results for schizophrenia
and bipolar disorder were included as baselines, since these disorders share similar
genetic variants with ASD60. Guanine-cytosine content was used as an additional
covariate to control for possible effects related to genome size in microarray
data137,138.

Relation to degree centrality. Given the little consensus on the directionality of
the connectivity alterations in ASD reported in the literature. Here, our purpose is
to investigate the relationship between idiosyncrasy and connectivity alterations to
elucidate the role of idiosyncrasy in these connectivity alterations. To study this
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putative association, we used two different measures of centrality, namely: degree
and eigenvector centrality. The first measure is defined as the total number of
connections whose linear product-moment correlation coefficients are above a
predefined threshold used to eliminate connections with low temporal correlation
attributable to signal noise22,139. Eigenvector centrality is based on the eigenvector
with the largest eigenvalue of the connectivity matrix. Following prior work that
used these measures to study connectivity alterations in ASD22,140, the threshold
for our analyses was set to 0.2.

Since idiosyncrasy is an inherent property that is also present in TD individuals
(presumably in a lower degree than in ASD), we first analyzed the relationship of
idiosyncrasy with hyper- and hypo-connectivity based on linear product-moment
correlations of the statistical t-maps of degree and eigenvector centrality with those
of DD and SDs using spin tests51. Positive degree centrality values would indicate
hyper-connectivity in ASD, whereas negative values indicate hypo-connectivity.
The same applies to our idiosyncrasy descriptors, with positive/negative SDs, for
instance, pointing out higher/lower deviations from the canonical reference
networks relative to TD. Then, we investigated the impact of idiosyncrasy in the
potential connectivity alterations when ignoring this phenomenon. Surface-based
analysis to find differences in connectivity between ASD and TD was performed
based on degree centrality (or eigenvector centrality). This analysis was initially
conducted without considering idiosyncrasy and then repeated controlling for
idiosyncrasy by incorporating SD and DD as additional covariates to our GLMs.

Statistics and reproducibility. Groupwise idiosyncrasy differences and correla-
tional analyses controlled for the site, sex, and age effects. For analyses involving
spatial idiosyncrasy descriptors (i.e., Dice/Jaccard overlap and SDs), the surface area
was further included as a nuisance covariate. For all our surface-based analyses,
threshold-free cluster enhancement (TFCE) was used with 10,000 permutations to
correct for multiple comparisons across the cortical surfaces141. A significance level
of 0.05 was used for all statistical tests. Network-level analyses, including associa-
tions between idiosyncrasy and CSS, were corrected for multiple comparisons using
Benjamini–Hochberg FDR correction131. For the correlations of idiosyncrasy with
CSS, the data was first z-scored with respect to TD and we regressed out the effects
of age, sex, and site prior to performing the correlations. Correlation of cortical
thickness and mean curvature index with our idiosyncrasy maps was carried out
while accounting for spatial autocorrelations using nonparametric permutation
tests51. For the gene enrichment analysis, significant genes were obtained by
regressing each gene against our cortical map of idiosyncrasy for each donor and
using a one-sample t-test to determine whether the slopes across all six donors were
different from 0. We corrected for multiple comparisons by randomly rotating our
maps of idiosyncrasy using 1000 spin permutations5. The reproducibility of idio-
syncrasy differences found using the whole ABIDE data (n= 329) was assessed for
each acquisition site separately (IP, n= 32; NYU, n= 126; PITT, n= 42; TCD,
n= 37; USM, n= 92) based on surface and diffusion distances. This analysis was
also repeated for children (n= 174, age <18) and adults (n= 155, age ≥18)
separately.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging and phenotypic data were provided, in part, by the Autism Brain Imaging
Data Exchange initiative (ABIDE-I and II; https://fcon_1000.projects.nitrc.org/indi/
abide). The specific subsets of data that were used in the present work are available from
the authors upon request.

Code availability
We made all code to run our analyses openly available at http://github.com/MICA-MNI/
micaopen.
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58. Arnatkevicĭūté, A., Fulcher, B. D. & Fornito, A. A practical guide to linking
brain-wide gene expression and neuroimaging data. NeuroImage 189,
353–367 (2019).

59. Dougherty, J. D., Schmidt, E. F., Nakajima, M. & Heintz, N. Analytical
approaches to RNA profiling data for the identification of genes enriched in
specific cells. Nucleic Acids Res. 38, 4218–4230 (2010).

60. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric
disorders parallels polygenic overlap. Science 359, 693–697 (2018).

61. Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29,
555–564 (2007).

62. Collin, G. & van den Heuvel, M. The ontogeny of the human connectome:
development and dynamic changes of brain connectivity across the life span.
Neuroscientist 19, 616–628 (2013).

63. Di Martino, A. et al. Unraveling the miswired connectome: a developmental
perspective. Neuron 83, 1335–1353 (2014).

64. He, Y., Byrge, L. & Kennedy, D. P. Nonreplication of functional connectivity
differences in autism spectrum disorder across multiple sites and denoising
strategies. Hum. Brain Mapp. 41, 1334–1350 (2020).

65. Gotham, K., Pickles, A. & Lord, C. Standardizing ADOS scores for a measure
of severity in autism spectrum disorders. J. Autism Dev. Disord. 39, 693–705
(2009).

66. Hus, V. & Lord, C. The autism diagnostic observation schedule, module 4:
revised algorithm and standardized severity scores. J. Autism Dev. Disord. 44,
1996–2012 (2014).

67. Moradi, E., Khundrakpam, B., Lewis, J. D., Evans, A. C. & Tohka, J. Predicting
symptom severity in autism spectrum disorder based on cortical thickness
measures in agglomerative data. NeuroImage 144, 128–141 (2017).

68. Hong, S.-J. et al. Toward a connectivity gradient-based framework for
reproducible biomarker discovery. NeuroImage 223, 117322 (2020).

69. Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-scale gradients in
human cortical organization. Trends Cogn. Sci. 22, 21–31 (2018).

70. Bajada, C. J. et al. A tutorial and tool for exploring feature similarity gradients
with MRI data. NeuroImage 221, 117140 (2020).

71. Paquola, C. et al. Microstructural and functional gradients are increasingly
dissociated in transmodal cortices. PLoS Biol. 17, 1–28 (2019).

72. Park, B. et al. Signal diffusion along connectome gradients and inter-hub
routing differentially contribute to dynamic human brain function.
Neuroimage 224, 117429 (2020).

73. Burt, J. et al. Hierarchy of transcriptomic specialization across human cortex
captured by structural neuroimaging topography. Nat. Neurosci. 21,
1251–1259 (2018).

74. Shine, J. et al. Human cognition involves the dynamic integration of neural
activity and neuromodulatory systems. Nat. Neurosci. 22, 289–296 (2019).

75. Simony, E. et al. Dynamic reconfiguration of the default mode network during
narrative comprehension. Nat. Commun. 7, 12141 (2016).

76. Piella, G. Diffusion maps for multimodal registration. Sens. Basel 14,
10562–10577 (2014).

77. Bi, X., Zhao, J., Xu, Q., Sun, Q. & Wang, Z. Abnormal functional connectivity
of resting state network detection based on linear ICA analysis in autism
spectrum disorder. Front. Physiol. 9, 475 (2018).

78. Farrant, K. & Uddin, L. Q. Atypical developmental of dorsal and ventral
attention networks in autism. Dev. Sci. 19, 550–563 (2016).

79. Yerys, B. E. et al. Globally weaker and topologically different: resting-state
connectivity in youth with autism. Mol. Autism 8, 39 (2017).

80. Yerys, B. E. et al. Functional connectivity of frontoparietal and salience/ventral
attention networks have independent associations with co-occurring
attention-deficit/hyperactivity disorder symptoms in children with autism.
Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 343–351 (2019).

81. Di Martino, A. et al. Functional brain correlates of social and nonsocial
processes in autism spectrum disorders: an activation likelihood estimation
meta-analysis. Biol. Psychiatry 65, 63–74 (2009).

82. Kozhemiako, N. et al. Alterations in local connectivity and their
developmental trajectories in autism spectrum disorder: does being female
matter? Cereb. Cortex 30, 5166–5179 (2020).

83. Mueller, S. et al. Individual variability in functional connectivity architecture
of the human brain. Neuron 77, 586–595 (2013).

84. Lewis, J. D. et al. The emergence of network inefficiencies in infants with
autism spectrum disorder. Biol. Psychiatry 82, 176–185 (2017).

85. Marco, E. J., Hinkley, L. B. N., Hill, S. S. & Nagarajan, S. S. Sensory processing
in autism: a review of neurophysiologic findings. Pediatr. Res 69, 48–54
(2011).

86. Mottron, L., Dawson, M., Soulières, I., Hubert, B. & Burack, J. Enhanced
perceptual functioning in autism: an update, and eight principles of autistic
perception. J. Autism Dev. Disord. 36, 27–43 (2006).

87. Robertson, C. E. & Baron-Cohen, S. Sensory perception in autism. Nat. Rev.
Neurosci. 18, 671–684 (2017).

88. Ito, T., Hearne, L. J. & Cole, M. W. A cortical hierarchy of localized and
distributed processes revealed via dissociation of task activations, connectivity
changes, and intrinsic timescales. NeuroImage 221, 117141 (2020).

89. Xu, T. et al. Cross-species functional alignment reveals evolutionary hierarchy
within the connectome. Neuroimage 223, 117346 (2020).

90. Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback
pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).

91. Mesulam, M.-M. From sensation to cognition. Brain J. Neurol. 121,
1013–1052 (1998).

92. Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H. & Wang, X.-J. A
large-scale circuit mechanism for hierarchical dynamical processing in the
primate cortex. Neuron 88, 419–431 (2015).

93. Li, M. et al. Performing group-level functional image analyses based on
homologous functional regions mapped in individuals. PLoS Biol. 17, 1–27
(2019).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02572-6 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1078 | https://doi.org/10.1038/s42003-021-02572-6 | www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


94. Gordon, E. M. et al. Precision functional mapping of individual human brains.
Neuron 95, 791–807 (2017). e7.

95. Gratton, C. et al. Functional brain networks are dominated by stable group
and individual factors, not cognitive or daily variation. Neuron 98, 439–452
(2018). e5.

96. Falahpour, M. et al. Underconnected, but not broken? Dynamic functional
connectivity MRI shows underconnectivity in autism is linked to increased
intra-individual variability across time. Brain Connect. 6, 403–414 (2016).

97. Paquola, C. et al. Shifts in myeloarchitecture characterise adolescent
development of cortical gradients. Elife 8, e50482 (2019).

98. Mottron, L., Belleville, S., Rouleau, G. A. & Collignon, O. Linking neocortical,
cognitive, and genetic variability in autism with alterations of brain plasticity:
the trigger-threshold-target model. Neurosci. Biobehav. Rev. 47, 735–752
(2014).

99. Pedapati, E. V. et al. Abnormal cortical plasticity in youth with autism
spectrum disorder: a transcranial magnetic stimulation case-control pilot
study. J. Child Adolesc. Psychopharmacol. 26, 625–631 (2016).

100. Bourgeron, T. From the genetic architecture to synaptic plasticity in autism
spectrum disorder. Nat. Rev. Neurosci. 16, 551–563 (2015).

101. Sestan, N. & State, M. W. Lost in translation: traversing the complex path
from genomics to therapeutics in autism spectrum disorder. Neuron 100,
406–423 (2018).

102. Miranda-Dominguez, O. et al. Heritability of the human connectome: a
connectotyping study. Netw. Neurosci. 2, 175–199 (2018).

103. Teeuw, J. et al. Genetic and environmental influences on functional
connectivity within and between canonical cortical resting-state networks
throughout adolescent development in boys and girls. Neuroimage 202,
116073 (2019).

104. Yang, Z. et al. Genetic and environmental contributions to functional
connectivity architecture of the human brain. Cereb. Cortex 26, 2341–2352
(2016).

105. Anderson, K. M. et al. Heritability of individualized cortical network
topography. Proc. Natl Acad. Sci. USA 118, e2016271118 (2021).

106. Colclough, G. L. et al. The heritability of multi-modal connectivity in human
brain activity. Elife 6, e20178 (2017).

107. Valk, S. L. et al. Genetic and phylogenetic uncoupling of structure and
function in human transmodal cortex. Preprint at bioRxiv (2021).

108. Moreau, C. A. et al. Mutations associated with neuropsychiatric conditions
delineate functional brain connectivity dimensions contributing to autism and
schizophrenia. Nat. Commun. 11, 5272 (2020).

109. Colvert, E. et al. Heritability of autism spectrum disorder in a UK population-
based twin sample. JAMA Psychiatry 72, 415–423 (2015).

110. Zerbi, V. et al. Brain mapping across 16 autism mouse models reveals a
spectrum of functional connectivity subtypes. Mol Psychiatry https://doi.org/
10.1038/s41380-021-01245-4 (2021).

111. Richmond, S., Johnson, K. A., Seal, M. L., Allen, N. B. & Whittle, S.
Development of brain networks and relevance of environmental and genetic
factors: a systematic review. Neurosci. Biobehav. Rev. 71, 215–239 (2016).

112. Hallmayer, J. et al. Genetic heritability and shared environmental factors
among twin pairs with autism. Arch. Gen. Psychiatry 68, 1095–1102
(2011).

113. Herbert, M. R. Contributions of the environment and environmentally
vulnerable physiology to autism spectrum disorders. Curr. Opin. Neurol. 23,
103–110 (2010).

114. Modabbernia, A., Velthorst, E. & Reichenberg, A. Environmental risk factors
for autism: an evidence-based review of systematic reviews and meta-analyses.
Mol. Autism 8, 1–16 (2017).

115. Uddin, L. Q. et al. Brain state differentiation and behavioral inflexibility in
autism. Cereb. Cortex 25, 4740–4747 (2015).

116. Dajani, D. R. & Uddin, L. Q. Demystifying cognitive flexibility: implications
for clinical and developmental neuroscience. Trends Neurosci. 38, 571–578
(2015).

117. Lord, C. et al. The autism diagnostic observation schedule-generic: a standard
measure of social and communication deficits associated with the spectrum of
autism. J. Autism Dev. Disord. 30, 205–223 (2000).

118. Lord, C., Rutter, M. & Le Couteur, A. Autism diagnostic interview-revised: a
revised version of a diagnostic interview for caregivers of individuals with
possible pervasive developmental disorders. J. Autism Dev. Disord. 24,
659–685 (1994).

119. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I.
Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).

120. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
121. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise

correction method (CompCor) for BOLD and perfusion based fMRI.
NeuroImage 37, 90–101 (2007).

122. Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale
gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103
(2020).

123. Tenenbaum, J. B., Silva, Vde & Langford, J. C. A global geometric framework
for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).

124. von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17, 395–416
(2007).

125. Vos de Wael, R. et al. Anatomical and microstructural determinants of
hippocampal subfield functional connectome embedding. Proc. Natl Acad. Sci.
USA 115, 10154–10159 (2018).

126. Langs, G. et al. Identifying shared brain networks in individuals by decoupling
functional and anatomical variability. Cereb. Cortex 26, 4004–4014 (2016).

127. Coifman, R. R. & Hirn, M. J. Diffusion maps for changing data. Appl. Comput.
Harmon. Anal. 36, 79–107 (2014).

128. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by
intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

129. Dice, L. R. Measures of the amount of ecologic association between species.
Ecology 26, 297–302 (1945).

130. Eickhoff, S. B., Thirion, B., Varoquaux, G. & Bzdok, D. Connectivity‐based
parcellation: critique and implications. Hum. Brain Mapp. 36, 4771–4792 (2015).

131. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57,
289–300 (1995).

132. Miles, J. Autism spectrum disorders—A genetics review. Genet. Med. 13,
278–294 (2011).

133. Rylaarsdam, L. & Guemez-Gamboa, A. Genetic causes and modifiers of autism
spectrum disorder. Front. Cell. Neurosci. 13, 385 (2019).

134. Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting
and sharing unthresholded statistical maps of the human brain. Front.
Neuroinform. 9, 8 (2015).

135. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD,
schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

136. Gandal, M., Leppa, V., Won, H., Parikshak, N. & Geschwind, D. The road to
precision psychiatry: translating genetics into disease mechanisms. Nat.
Neurosci. 19, 1397–1407 (2016).

137. Love, M., Hogenesch, J. & Irizarry, R. Modeling of RNA-seq fragment
sequence bias reduces systematic errors in transcript abundance estimation.
Nat. Biotechnol. 34, 1287–1291 (2016).

138. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-
seq. Nat. Methods 10, 1177–1184 (2013).

139. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity:
mapping, assessment of stability, and relation to Alzheimer’s disease. J.
Neurosci. 29, 1860–1873 (2009).

140. Di Martino, A. et al. Shared and distinct intrinsic functional network centrality
in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry 74,
623–632 (2013).

141. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing
problems of smoothing, threshold dependence and localisation in cluster
inference. Neuroimage 44, 83–98 (2009).

Acknowledgements
Oualid Benkarim was funded by a Healthy Brains for Healthy Lives (HBHL) postdoctoral
fellowship and is a member of the Quebec Autism Research Training (QART) program.
Casey Paquola was funded through a postdoctoral fellowship of the Fonds de la
Recherche due Quebec - Santé (FRQ-S). B.-y.P. was funded by the National Research
Foundation of Korea (NRF-2020R1A6A3A03037088), Molson Neuro-Engineering fel-
lowship by Montreal Neurological Institute and Hospital (MNI), and FRQ-S. B.B.
acknowledges research support from the National Science and Engineering Research
Council of Canada (NSERC Discovery-1304413), the Canadian Institutes of Health
Research (CIHR FDN-154298), SickKids Foundation (NI17-039), Azrieli Center for
Autism Research (ACAR-TACC), BrainCanada (Azrieli Future Leaders), and the Tier-2
Canada Research Chairs program. J.R. was funded by a CIHR fellowship. R.V.d.W. was
funded by a studentship from the Savoy Foundation. S.L. is funded by CIHR. We would
also like to acknowledge support from the Helmholtz Foundation and the Healthy Brains
for Healthy Lives initiative. D.B. was supported by the Healthy Brains Healthy Lives
initiative (Canada First Research Excellence fund), Google (Research/Teaching Award),
the Canadian Institute of Health Research (CIHR), and by the CIFAR Artificial Intelli-
gence Chairs program (Canada Institute for Advanced Research), as well as by NIH-R01
grant AG068563A. S.V. was supported by the Max Planck Society (Otto Hahn Award).

Author contributions
O.B. and B.C.B. designed the experiments, analyzed the data, and wrote the manuscript.
C.P., B.-y.P., and S.H. aided with the experiments. J.R., R.V.d.W., S.L., S.V., D.B., and
L.M. reviewed the manuscript. O.B. and B.C.B. are the corresponding authors of this
work and have responsibility for the integrity of the data analysis.

Competing interests
The authors declare no competing interests.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02572-6

14 COMMUNICATIONS BIOLOGY |          (2021) 4:1078 | https://doi.org/10.1038/s42003-021-02572-6 | www.nature.com/commsbio

https://doi.org/10.1038/s41380-021-01245-4
https://doi.org/10.1038/s41380-021-01245-4
www.nature.com/commsbio


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-021-02572-6.

Correspondence and requests for materials should be addressed to Oualid Benkarim or
Boris C. Bernhardt.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editor: Karli
Montague-Cardoso.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02572-6 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1078 | https://doi.org/10.1038/s42003-021-02572-6 | www.nature.com/commsbio 15

https://doi.org/10.1038/s42003-021-02572-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Connectivity alterations in autism reflect functional idiosyncrasy
	Results
	Idiosyncrasy is characterized by the shifting of functional networks in physical and embedding spaces
	Idiosyncrasy association to age and symptom severity
	Associations to cortical morphology and gene expression patterns
	Connectivity alterations reflect idiosyncrasy

	Discussion
	Methods
	Participants and data acquisition
	Data preprocessing
	Identification of intrinsic connectivity networks
	Idiosyncrasy descriptors
	Analysis of idiosyncrasy
	Gene enrichment analysis
	Relation to degree centrality
	Statistics and reproducibility

	Reporting Summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




